Standards-based, Energy-efficient HPC Systems: Trends, Implementations and Solutions.

Dr. Frank Baetke HP ISS/SCI Global Technology Programs

EnA-HPC Conference, Hamburg, September 16 – 17, 2010

Purpose-built HPC Servers

The Most Successful Architecture Ever to Enter the TOP500

Copyright (c) 2009, Hewlett Packard. HP Confidential.

The Most Successful Architecture Ever to Enter the TOP500 – the BL-Series (c-Class)

New Performance/Density for HPC: HP ProLiant BL2x220c G6

BL2x220c G6			
Processor	Two 80W or 60W dual- or quad-core Intel Xeon 5500 Series processors per server node*		
Memory	Registered or Unbuffered DDR3 6 DIMM Sockets per server 96GB max per server		
Internal Storage	1 Non-Hot Plug SFF SATA HDD per server		
Networking	2 integrated 1GbE Ethernet ports per server		
Mezzanine Slots	1 PCle Gen2 x8 mezzanine expansion slot per server		
Additional Features	Internal USB 2.0 connector Optional internal SD Card slot (consumes the USB slot)		
Management	ProLiant Onboard Administrator powered by iLO2		
Density	32 server nodes in 10U enclosure		

95W processors available through the SCI Private-plus proce

HP BladeServer c-Class 2p servers (subset)

	BL280c G6	BL460c G6	BL490c G6	BL465c G7 (June)
Processor	Up to 2P, up to 6c Intel Xeon 5500/5600 series			Up to 2, up to 12-Core AMD Opteron 6100 Series
Max Memory	12 DDR3 slots Max memory: <mark>192GB</mark>		18 DDR3 slots Max memory: 192GB	16 DDR3 Sockets Max memory: 256GB
Storage	2 non-hot plug SFF SATA/SAS/SSD drives	Up to 2 Hot Plug SFF SAS/SATA	Up to 2 non-hot plug SSD	Up to 2 Hot Plug SFF SATA/SAS/SSD
Networking	2 integrated Multifunction GbE ports	2 integrated Multifunction 10GbE ports with Flex-10 support		
Form factor	16 per 10u enclosure 8 per 6u enclosure			
Usage	General Compute	General Compute, with hot-plug drives & 10GbE	Large Memory, with 10GbE	General Compute, with hot-plug drives & 10GbE

PURPOSE DRIVEN SCALE-OUT PRODUCT LINES

Density optimized for the data center

Shared infrastructure for accelerated service delivery

Extreme scale out datacenters with lean management

	DL	BL	SL
Design center	Rack	Blade enclosure in rack	Rack
Design focus	Versatility & value	Integrated & optimized, maximum redundancy	Cost & features optimized for extreme scale out
Application	General purpose	General purpose / private cloud / scale out	Web 2.0 / cloud / scale out
Management	Essential and advanced management HP Insight Dynamics	Advanced management- accelerated service delivery & change in minutes	Home grown management Basic management via IPMI/DCMI

Forget everything but remember SL

Purpose-built HPC Nodes

SL-Series: HP PROLIANT SL6000 Ideal environments

#1 perf/watt SPECpower_ssj2008 3106*

HP ProLiant	HP ProLiant	HP ProLiant	HP ProLiant
SL160z G6	SL165z G7	SL170z G6	SL2x170z G6
Maximum expansion with 18 DIMM slots and up to 2 PCIe slots	Maximum expansion with 12-core AMD processors and 24 DIMM slots	Maximum storage capacity with up to 6 LFF SATA or SAS hard drives	Maximum compute density with two servers per tray (1U)
Ideal Application	Ideal Application	Ideal Application	Ideal Application
HPC database tier	HPC database tier	Web Search	HPC compute intensive
Web memory-cache	Web memory-cache	Web database	Web front end

¹ Based on April 2010 published benchmarks. 12/11/07 SPEC announces the release of <u>SPECpower_ssi2008</u>, the first industry-standard SPEC benchmark that evaluates the power and performance characteristics of volume server class computers. The competitive benchmark results stated herein reflect results published on <u>www.spec.org</u>, See http://www.spec.org/power_ssi2008/results/power_ssi2008.html

SPEC[®], the SPEC logo and the benchmark name SPECpower_ssj[®]2008 are registered trademarks of the Standard Performance Evaluation Corporation. The SPEC logo is © 2007 Standard Performance Evaluation Corporation (SPEC), reprinted with permission.

HP ProLiant SL Scalable System

Next generation breakthrough server family optimized for scale-out

- Affordable scale
 - Lower acquisition cost than traditional rack servers
 - Right-sized dense server solutions
 - Based on Industry Standards
- Leading performance and efficiency
 - Concentrated compute power
 - Shared high efficiency power and cooling components
 - Lower your operating costs
- Flexible and serviceable solutions
 - Modular design allows tailoring
 - Serviceability and storage capable designs
 - Works in existing data center infrastructure

Highly Flexible SL Chassis

Multi-node, Shared Power & Cooling Architecture

- Shared Power & Fans
- Optional Hot-Plug Redundant PSU
- Energy efficient Hot Plug fans
- 3 Phase Load Balancing
- 94% Platinum Common Slot Power Supplies
- N +1 Capable Power Supplies (up to 4)

Benefits: Low cost, high efficiency chassis

- 4U Chassis for deployment flexibility
- Standard 19" racks, with front I/O cabling
- Unrestricted airflow (no mid-plane or I/O connectors)
- Reduced weight
- Individually Serviceable Nodes
- Variety of optimized Node Modules
- Ability to mix and match nodes

- SL Advanced Power Manager Support
- Power Monitoring
- Node Level Power Off/On

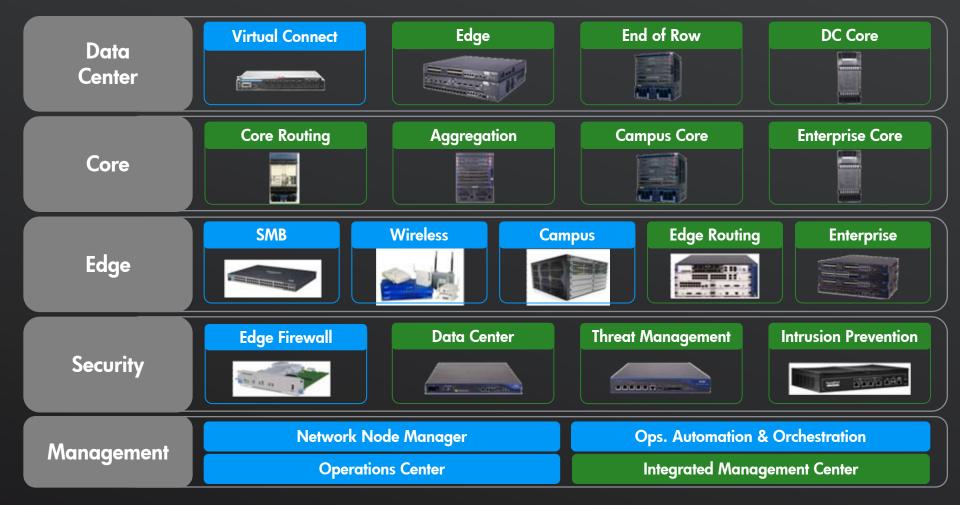
Purpose-built HPC Storage

Complementary Scalable Storage Solutions for High Performance Computing

X9000 Network Storage System

- Scalable performance and capacity
 - Scalable aggregate bandwidth
 - Scalable metadata, ideal for small files
- Shared datacenter multipurpose storage
 - Linux and Windows clients
 - NFS & CIFS support
 - Ideal for applications in media, FSI, bioinformatics, web/cloud

DDN Storage with Lustre


- Scalable performance and capacity
 - Scalable single-file bandwidth, with multiple writers
 - demanding bandwidth requirements
- Tightly coupled to HPC Linux clusters
- Ideal for parallel applications in traditional HPC

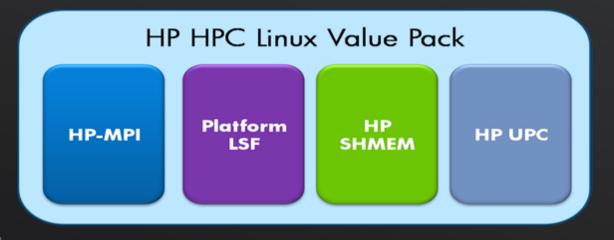
Purpose-built HPC Fabrics

HP + 3Com – Leadership from Edge to Data Center Core

HPC Software Infrastructure

Unified Cluster Portfolio

HPC Technical and Enterprise services

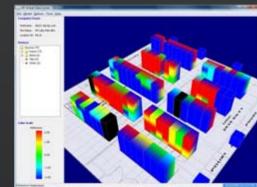

HPC application, development and cloud software portfolio

Advanced and specialty options (Accelerators, Visualization, other)			
Scalable data management (HP x9000 NSS, Lustre Cluster FS)			
Cluster management layer			
HP CMU	Partner and Open Source choice	Microsoft Windows HPC Server 2008	
Operating environment and OS extensions			
	Windows		
HP cluster platforms HP ProLiant servers, HP BladeSystem, multiple interconnects			
HP Datacenter Products & Services			

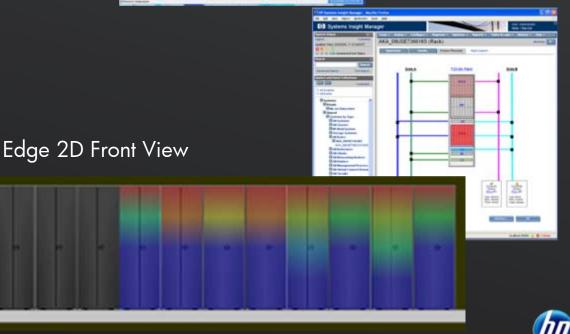
A la Carte cluster options for HP Clusters

- Operating systems: RHEL, SLES, or customer-supported community distributions; Microsoft Windows HPC Server 2008
- Cluster Management: HP CMU, or third party, via SLMS or customer installed (e.g., ROCKS, Platform Cluster Manager)
- MPI: HP-MPI, or third party/open source; Windows MPI
- Workload manager: Platform LSF (via SLMS now), Altair PBS Pro (HP SKU), Adaptive Computing Moab (via SLMS)

Datacenters – Good looking



ADAPTIVE AND SCALABLE SOFTWARE FOR HPC Datacenters


Edge Futures

- Integration with Insight Control
- One pane of glass power and cooling visualziation
- True 3D visualization
- Macro Data Center view
- Micro rack level view

Edge 3D Visualization

IPM Rack View

Datacenters – PODs

Trend? Are Next Generation Data Centers Ugly?

Advantages: Fast Deployment and Time to Operation: Efficient to Build and Rebuild

- Container backed into truck bay on mfg floor
- Racks assembled and then put into containers
- Truck pulls out with fully-configured container to the customer site...

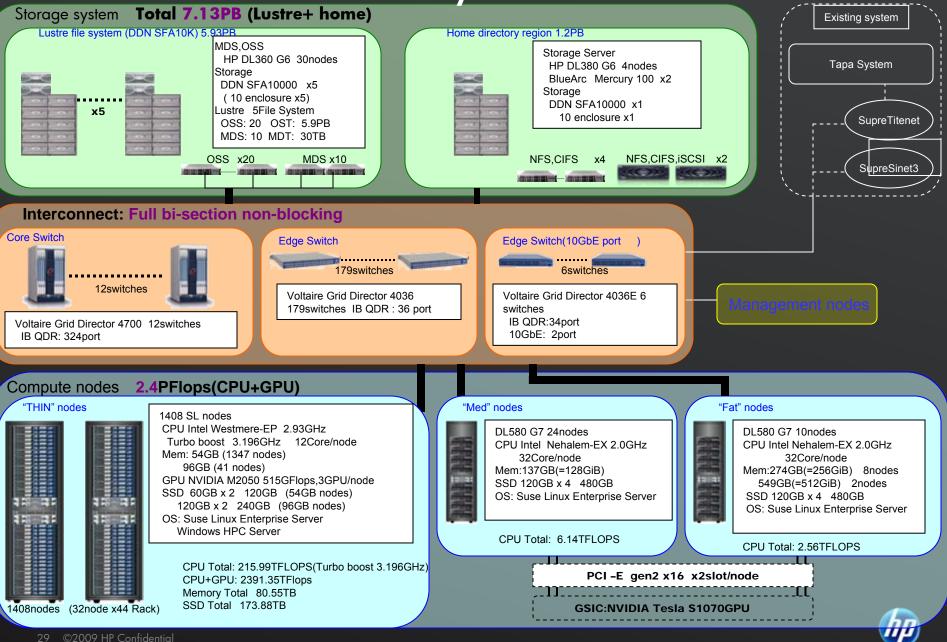
HP POD products and concepts

- 22 50U racks 40ft
- 600kW power capacity
- Designed for high density deployments max 34kW per rack
- Flexible for redundant or non-redundant deployments

- 10 50U racks 20ft
- Modular design for better supply chain efficiency
- Flexibility to customize
- Rugged exterior
- EMI shielding
- Designed for portability

Future Peta-scale Centers

Peta-scale Implementation Example: TITECH Tsubame 2.0

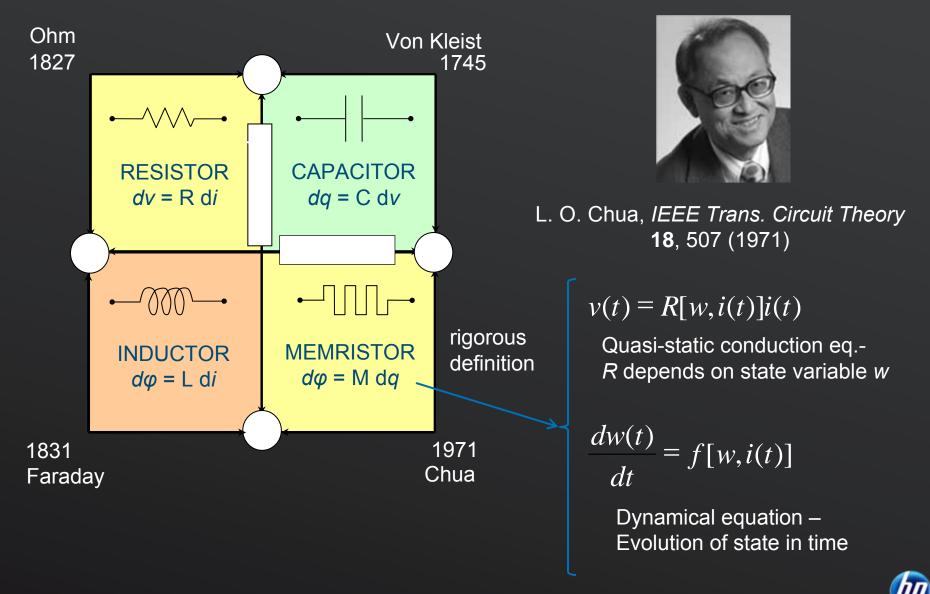


TSUBAME 2.0 Overview

- Compute nodes: 2.4PFlops (CPU+GPU)
 - New SL-node >>1408)thin nodes, each with 2 Westmere-EP and 3 NVIDIA M2050
 - 1347 with 54GB and SSD 60GB, 41 with 96GB and SSD 120GB
 - Suse Linux Enterprise Server or Windows HPC Server
 - DL580 G7 Medium (24) and Fat (10) nodes, with 2 NVIDIA \$1070
 - Medium: 128GB plus SSD 120GB x4
 - Fat: 256BG plus SSD 120GB x4
- QDR InfiniBand, full bisection, non-blocking
 - Spine: Voltaire Grid Director 4700 12 x 324port
 - Edge: Voltaire Grid Director 4036 179 x 36 port and 4036E 6 x 34port/10GbE 2 port
- Storage: 5.93PB
 - Lustre file system 5.93PB: DDN SFA 10000 (10/rack, 5 racks) and DL360 G6 (30)
 - Home file system: 1.2PB: DDN SFA 10000 (10/rack, 1 racks), BlueArc Mercury 100 (2) and DL360 G6 (30)
- Press release (Japanese):
 - <u>http://www.gsic.titech.ac.jp/sites/default/files/pdf/TSUBAME/press.pdf</u>

TSUBAME 2.0 System Overview

Trends in Efficiency


	5 yrs. ago	2010	2015
PUE	2, 3, Higher	1.1 Great	?
UPS Efficiency (Part of PUE)	94%	98%+	?
Power Supply Efficiency	75%	94%+	?
Fan Power per 2s Node	60+ W	2-10 W (< 1%) (some think 0)	?

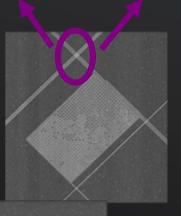
Fundamental Research

The Prediction of a New Circuit Element: the Memristor

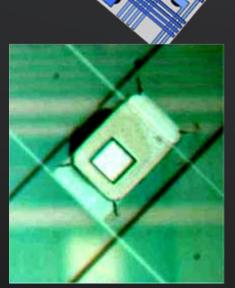
Copyright (c) 2009, Hewlett Packard.

First Hybrid CMOS-Memristor Chip

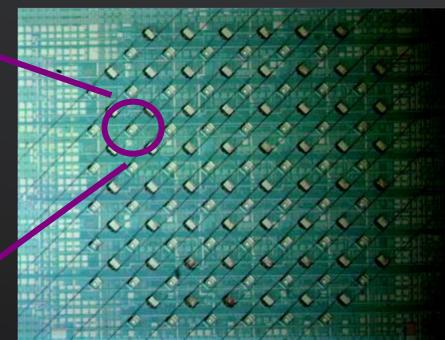
Issues that had to be overcome:


planarity

alignment of fine features

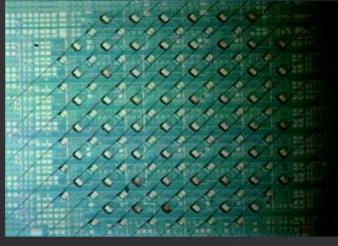

3x3 100nm nanowire

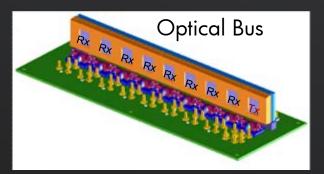
Crossbar junctions



H 10 μm 5E overview

Connecting the CMOS layer with the nanowire crossbar junctions Copyright (c) 2009, Hewlett Packard.


CMOS chip with memristive devices



Long-term Trends in HPC: Examples of HP Labs Innovation

- Capacity Memristor (short for memory resistor)
 - Scales to extremely high density (many terabits/sq cm)
 - Non-volatile essentially infinite data retention time
 - Reasonably fast (ns) and low energy (pJ)
- Bandwidth Photonics
 - High bandwidth, and highly energy efficient
 - Photonic interconnects between systems available now
 - Long term research leading to photonic interconnects within systems and chips

CMOS chip with memristive devices

www.hpl.hp.com

Invitation

Attend HP-CAST in New Orleans, right before SC10, November 12 – 13 !! Worldwide User Group Conference Focus Session: Energy Efficient Peta-scale Computing - see www.hp-cast.org

HP-CAST

HP Consortium for Advanced Scientific and Technical Computing Word-Wide User Group Meeting Scalable Computing Infrastructure (ISS/SCI) Organization InterContinental Hotel, Fontenay 10, 20354 Hamburg, Germany May 28th – 29th, 2010

HP-CAST 14

World-wide User Group Conference with Participation of NTIG (Nordic Technical Interest Group) & HP-CAST IBÉRICA Draft Agenda V2.1p

Thursday, May 27th – Registration & Get-Together

 17:00 - 22:00
 Registration

 19:00 - 22:00
 HP-CAST Welcome Reception

All Attendees

Friday, May 28th – Conference

Thank You

