Energy Efficient HPC in Metropolitan Environments

supply and demand side management

Michel Bénard Director, Open Innovation Office *representing* Chandrakant Patel, HP Senior Fellow and Director Sustainable IT Ecosystem Laboratory Hewlett Packard Laboratories

On IT and Energy

A growing appetite for Joules

IT Energy Consumption

IT represents 2% of total energy consumption (growing double-digit per year) But IT can also help addressing most of total energy consumption (Industrial: 31%, Transportation: 28%, Residential: 22% and Commercial: 19%)

Chandrakant D. Patel, HP Laboratories, chandrakant.patel@hp.com

IT consumption: An explosion of needs and applications

Consumer

- Access to Data (text, sound, images, video): TBs per person
- Social interactions (voice, data, images): Mb/s of I/O per person
- Digital TV/ Move to 3D: forget square, enjoy cubic!
- Enterprise
 - Acquisition, Processing and Displaying of Enterprise Data: PBs
 - Business Intelligence: Data Analysis, Simulation, Decision
 - Communication: E-mail, Virtual presence, Immersion

Joules: Currency of the flat world

in the cloud...

Chandrakant D. Patel, HP Laboratories, chandrakant.patel@hp.com

Sustainable IT Ecosystem

On HP Labs' Research on Sustainability

Michel Bénard HP Laboratories, michel.benard@hp.com

HP LABS AROUND THE WORLD

Central Nervous System for the Earth

RESEARCH CONTRIBUTION

- Networks of billions of low-cost, self-powered, nano-scale sensors
 - Acute sensitivity of minute changes
- Dynamically provision resources in real time
 - Seismic oil exploration
 - Structural integrity
 - Merchandise tracking
 - Energy use
 - Climate monitoring

SUSTAINABILITY

END STATE: An IT industry with a light carbon footprint that drives the reduction of carbon emissions throughout the global economy

HP LABS' RESEARCH CONTRIBUTION: Displace conventional supply chains with sustainable IT ecosystems

BIG BET:

SUSTAINABLE DATA CENTERS Integrated, end-to-end management of compute,

power & cooling resources from cradle to cradle

History of Work at HP Laboratories

Thermal Management, Systems Design, Data Center Design and Management, Sustainable IT Ecosystem

On building a Sustainable Data Center

End to end supply and demand side management

Sustainable Data Center

Key Components and Key Elements

IT	Power	Cooling			
Autonomous Control					
Knowledge Discovery & Visualization					
Pervasive Cross-layer Sensing					
Flexible, Efficien	t, & Configurable	Building Blocks			
Data Center Scale Lifecycle Design					

extraction manufacturing operation End of Life

Dynamic Control of Cooling

HP Labs Data Center, Palo Alto, CA

- Minimizing thermodynamic work by operating at higher temperature
- Minimizing flow work by "right" provisioning the fluid flow

35% Available Energy Savings

Dynamic Control air flow rate and temperature

Conventional approach

Inlet temperature at

25 °C

Sustainable Data Center in HP Labs Palo Alto

Efficient and light through dynamic allocation of power, compute and cooling resources

Research: Integrated IT-Facility Management

- E Experiment setup :
- 20 physical servers
 - 9 in Rack 10; 11 in Rack 34
- 35 Virtual Machines
 - 2 interactive 3-tier apps
 - 29 computational workloads
- 10 hour experiment
- Integrated controllers
 - Application Controller

EXTRACTION

- Node Controller
- Pod Controller
- DSC Controller

Example: Real-time thermal-aware placement of virtualized IT load

Savings: 26.5% IT power, 16.5% cooling power

MANUFACTURING

OPERATION

li (i

END OF LIFE

Knowledge Discovery

Inference from thousands of sensed points

Knowledge Discovery

Vindhyas – Asia Pacific Lab Data Center, Bangalore, India

40% reduction in AHU power 20% reduction in Infrastructure Power 7,500 tons of CO₂ prevented annually

IT Building Blocks

Sensor Network

•7500 sensors

•10 second sample interval

Michel Bénard HP Laboratories, michel.benard@hp.com

redundancy

Example of Knowledge Discovery

Pattern mining of chiller ensemble in Bangalore data center

Research: Motif mining, Anomaly Detection, Visual Analytics (HP Data Center Mobile Studio) Focus on: Operational energy, emission, consumption of water and reliability

Example: Motif Mining applied to water and air cooled chiller ensemble

Annual Savings: 359 MWh (~10%); 179,580 G direct water; 287, 328 Kg CO₂

EXTRACTION

MANUFACTURING

OPERATION

END OF LIFE

NUUNUUN

7/4/2008 02-4

Research on the Supply side

Michel Bénard HP Laboratories, michel.benard@hp.com

Supply Side Research

Manure as one of the sources

Server Farm at a Dairy Farm+ Micro-grid

Ref: Ratnesh Sharma, Tom Christian, Martin Arlitt, Cullen Bash, Chandrakant Patel, "Design of Farm Waste-Supply Side Infrastructure for Data Centers, ASME 2010-Energy Sustainability, ES 2010-90219

Supply Side Lifecycle Perspective

Lifecycle engineering and management

Hannemann, C., et. al., "Lifetime Exergy Consumption as a Sustainability Metric for Enterprise Servers", Proceedings of ASME Energy Sustainability, August 2008

Environmental Sustainability Analysis Tool

Proactive design time approach, not compliance time

On the Sustainable IT Ecosystem

Demand & Supply Management

Role of the IT Ecosystem

addressing the fundamental needs of the society

- 1. IT services to meet the fundamental needs of the masses
 - Advantage of scale when billions utilize IT to address their fundamental needs and improve quality of life
 - Transformation necessitates
 - Reducing the cost of IT for universal accessibility
 - Reducing total cost of ownership necessitates addressing sustainability with an <u>end to end supply</u> <u>and demand side perspective</u>
- 2. Use the IT ecosystem to enable need based provisioning of resources across all ecosystem
 - Power, water, transport, waste.....
 - <u>Transformation necessitates</u>
 - <u>supply and demand side management of resources</u>

Micro-businesses

Queue at CNG Filling Station

Key Enablers:

• Unifying Metric, Return to Fundamentals of Engineering & Multidisciplinary Curriculum

Michel Bénard HP Laboratories, michel.benard@hp.com

Technical Approach

Integrated Supply-Demand Management based on Service Level Agreement

- Supply Side:
 - Lifecycle perspective
 - available energy (exergy) required in extraction, manufacturing, operation and reclamation
 - utilize local resources to minimize destruction of available energy in transmission, construction of transmission infrastructure, etc
- Demand Side:
 - Provision resources based on the needs of the user
 - pervasive sensing, communications, knowledge discovery, and policy based control

application to other ecosystems.....

Michel Bénard HP Laboratories, michel.benard@hp.com

Sustainable Campus, District or City

Enabled by a Sustainable IT Ecosystem

	Power	Transport	Water	Waste	
	Policy-Ba	ased Control &	Operation		
Kr	nowledge Disc	overy, Data Mi	ning, Visualiza	tion	
	Pervasiv	e Sensing Infr	astructure		
	Scalable & Cor	nfigurable Res	ource Microgri	ds	
Life-Cycle Design					

Home

supply and demand side management - SMART GRID

City supply-demand side management of resources

Joules: Currency of the flat world

in the cloud...

Michel Bénard HP Laboratories, michel.benard@hp.com

