System and Technology Group

Optimizing Energy Consumption of HPC Applications on Power7

Luigi Brochard, Raj Panda, Sid Vemugati, IBM System & Technology Group ENA-HPC, Hamburg , September 17 2010

© 2010 IBM Corporation

Goals

- Measure fine grain power consumption when running HPC applications workloads
- Define correlations between application characteristics and power consumptions
- Build a simple method to predict power consumption at different frequencies

Agenda

- Tools, Systems and Applications
- Measurements
- Analysis and Correlation
- Power Consumption Model
- Examples of Energy Optimization

Tools

Power consumption and Performance of HPC applications

17 September 2010

4

Tools

- Active Energy Manager (AEM)
 - Product available on all platforms
 - Measure power consumptions at the node/blade and frame/chassis level

AMESTER

- Research tool available on JS22
- Measure detailed power consumptions at processor and memory level

HPM counters

- Tool available on System x and System p platforms
- Provide Hardware Counters

IBM Systems Director Active Energy Manager

- Exploit Energy Scale capabilities in POWER servers
 - Power Trending, Capping
 - Thermal Trending, Effective CPU Trending
- Support power savings for POWER 6 and 7 models
- Exploit hardware capabilities in IBM System z servers
 - Power Trending and Thermal Trending
 - Synergistic with "Mainframe Gas Gauge"
- Discover and monitor legacy and select non-IBM systems through the intelligent Power Distribution Unit (iPDU)
 - Display trending information per load group
- Enhancements above PowerExecutive (Windows, xLinux)
 - Support for new x86 models: x33850, x3850 M2, x3950 M2, and BC-S 8886
 - Cross-system monitoring and management support
 - iPDU support
 - System polling enhancements
- AEM GUI runs on : Windows, Linux/x86, Linux/Power, Linux/System z

AEM and Amester Comparison

	Amester	Active Energy Manager
Use	A tool for research	A product for customers
Systems with feature	HS20, JS21, JS22, p755,	many systems
Requirements	Windows or Linux (x86 only)	IBM Director
Testing	None	Yes
Scaling limits	Not tested	Thousands of servers
Power measurement resolution	0.1 W	1 W
Power measurement timescale	1 millisecond	1 minute for all systems and 10 minutes for blades
Documentation	Yes	Yes
Programmable	Excellent	Poor

leslie3d power consumption on JS22 with Amester

Power consumption and Performance of HPC applications

17 September 2010

POWER7 Processor

- IBM's 45nm SOI process
- 567 mm2, 1.2B transistors
- 8 out-of-order cores, 4-way SMT
- 32KB L1 D/I, 256KB L2 per core, 32MB shared L3 in IBM's eDRAM process
- 2 on-chip memory controllers, 2 pairs of buffered memory channels each
- Designed for blades, commercial SMPs, supercomputers

4X cores in similar power envelope

Designed for energy-efficiency and effective power management.

Thermal, Power and Activity Sensors

- 44 digital thermal sensors (5 per chiplet, 4 extrachiplet) on chip; Max chiplet thermal sensor(s) also directly available to firmware.
- On-board ambient temperature sensor, memory buffer/DIMM thermal sensors and VRM thermaltrip logic.
- On-board measurement circuits and A/D channels for
 - full system,
 - processor socket,
 - memory sub-system, I/O sub-system and fan power measurements
- Performance/activity sensors
 - Core-level usage with active cycle counts, instruction throughput counts
 - Core-level memory hierarchy usage event-based programmable weight counters for frequency impact at high loads
 - Memory controller-level activity requests and power-mode usage stats

P7 Power Save States

Power Save States	Freq
	(Max)
Pstate0	1.1
Pstate1	1.0
Pstate2	0.9
Pstate3	0.8
Pstate4	0.7
Pstate5	0.6
Pstate6	Fmax@v min
Pstate7	0.50

Architected Idle Modes (OS+hypervisor managed)

- Nap clocks off for execution units and L1 caches within core
 - Optional auto frequency drop support for additional power reduction
- Sleep clocks off for entire chiplet, caches flushed prior to entry.
 - Optional *auto* voltage drop to *latch-state-retention level* for additional power reduction when all cores sleep.

IBM EnergyScale functions

Power / Thermal Trending

- Collect and report power consumption, inlet and exhaust temp

Power Capping

- Guaranteed (Hard Cap)
 - Enforces a power cap via Dynamic Frequency and Voltage Slewing

-Soft Power Cap

• Attempted lower cap, but not guaranteed.

Energy Management Modes – Enhanced for P7

- Static Power Save (SPS)

• Save power via a fixed voltage and frequency drop – as much as 30% down for P7

- Dynamic Power Save (DPS)

- Optimize power vs performance using Dynamic Voltage and Frequency Slewing
- Will provide performance boost at very high utilization
- Will save power at most utilizations

- Dynamic Power Save - Favor Performance (DPS-FP)

- Will provide performance boost at most utilizations
- Will save power only at very low utilization

High Level System Power Control View

p750 characteristics

System	Processor	Nominal /Power Save Frequency (GHz)	Memory / speed (MHz)	Cores
p750	IBM POWER7	3.55/2.50	32 x 4GB 1066	32

SPS on p750

Applications

Application	Area
416.gamess	Quantum Chemistry
433.milc	Physics
435.gromacs	Molecular Dynamics
437.leslie3d	Fluid Dynamics
444.namd	Molecular Dynamics
454.calculix	Structural Analysis
459.GemsFDTD	Electromagnetics
481.wrf	Weather Forecasting

Note: All applications are from SPEC CPUFP2006 suite

Measurements

18

Components of power consumption on p750, 3.55 GHz

		Average Power							
	Total	Core	DIMM	Static					
416.gamess	984	724	110	151					
433.milc	1084	646	268	171					
435.gromacs	1002	705	144	153					
437.leslie3d	1141	699	266	176					
444.namd	1001	717	135	149					
454.calculix	1041	747	142	151					
459.GemsFDTD	1070	645	264	161					
481.wrf	1147	750	234	163					
idle power	768	517	98	153					

Correlation of Power and Performance

Events used

- -PM_RUN_CYC
 - Non Idle Cycles
- -PM_RUN_INST_CMPL
 - Non Idle Instructions Completed
- -PM_MEM_RQ_DISP
 - Event counted at memory controller to count Memory Read Dispatches.
- -PM_MEM_WR_DISP
 - Event counted at memory controller to count Memory Write Dispatches
- Metrics used

-CPI = [PM_RUN_CYC/ PM_RUN_INST_CMPL]

-Read GB/s = (128* (PM_MEM0_RQ_DISP/2))/(PM_CYC/Frequency)

-Write GB/s = (128* PM_MEM0_WR_DISP/2))/(PM_CYC/Frequency)

-Total BW = Read GB/s + Write GB/s

-GIBS = 32 * Frequency / CPI

-Where clk_ratio = Core to nest clock ratio = 2

Components of power consumption on p750

			Average Power					
	CPI	GB/s	Total	Core	DIMM	Static		
416.gamess	0.59	0.06	984	724	110	151		
433.milc	2.74	40.00	1084	646	268	171		
435.gromacs	0.75	0.98	1002	705	144	153		
437.leslie3d	0.91	39.42	1141	699	266	176		
444.namd	0.72	0.36	1001	717	135	149		
454.Calculix	0.53	3.07	1041	747	142	151		
459.GemsFDTD	1.96	38.54	1070	645	264	161		
481.wrf	0.58	29.15	1147	750	234	163		
idle power			768	517	98	153		

Components of power consumption on p750

				Average Power			
		CPI	GB/s	Total	Core	Core DIMM	
>	416.gamess	0.59	0.06	984	724	110	151
	433.milc	2.74	40.00	1084	646	268	171
	435.gromacs	0.75	0.98	1002	705	144	153
	437.leslie3d	0.91	39.42	1141	699	266	176
	444.namd	0.72	0.36	1001	717	135	149
	454.Calculix	0.53	3.07	1041	747	142	151
	459.GemsFDTD	1.96	38.54	1070	645	264	161
>	481.wrf	0.58	29.15	1147	750	234	163
	idle power			768	517	98	153

Components of power consumption on p750

				Average Power			
		CPI	GB/s	Total	Core	DIMM	Static
	416.gamess	0.59	0.06	984	724	110	151
\longrightarrow	433.milc	2.74	40.00	1084	646	268	171
	435.gromacs	0.75	0.98	1002	705	144	153
\longrightarrow	437.leslie3d	0.91	39.42	1141	699	266	176
	444.namd	0.72	0.36	1001	717	135	149
	454.Calculix	0.53	3.07	1041	747	142	151
\longrightarrow	459.GemsFDTD	1.96	38.54	1070	645	264	161
	481.wrf	0.58	29.15	1147	750	234	163
	idle power			768	517	98	153

Power consumption on p 750

- on p750 (normal= 3.55 GHz, power save = 2.5 GHz

th				Average Power			
	CPI GIPS	GBS	-	Total	Core	DIMM	Static
416.games	0.59	6.05	0.06	984	724	110	151
433.milc	2.74	1.30	40.00	1084	646	268	171
435.groma	0.75	4.75	0.98	1002	705	144	153
437.leslie3	0.91	3.90	39.42	1141	699	266	176
444.namd	0.72	4.95	0.36	1001	717	135	149
454.calculi:	0.53	6.74	3.07	1041	747	142	151
459.Gemsl	1.96	1.82	38.54	1070	645	264	161
481.wrf	0.58	6.15	29.15	1147	750	234	163
				16.6%	18.4%	13.8%	2.4%
idle power				768	517	98	153

th				Average Power				
	CPI GIPS	GBS		Total	Core	DIMM	Static	
416.games	0.61	4.06	0.06	66	5 423	103	138	
433.milc	1.94	1.28	39.11	84	1 416	265	160	
435.groma	0.75	3.34	0.69	704	4 417	143	144	
437.leslie3	0.65	3.84	38.78	87	4 453	264	157	
444.namd	0.72	3.48	0.25	69	5 423	131	141	
454.calculi:	1.07	2.33	2.18	72	1 441	138	142	
459.Gemsl	1.44	1.73	37.58	833	2 417	261	154	
481.wrf	0.55	4.51	21.30	81	1 449	210	152	
				31.6%	6 8.6%	18.5%	2.5%	
idle power				54	1 304	98	139	

Power consumption and Performance of HPC applications

17 September 2010

Power Consumption Model

26

Model for the power consumption

$PWR(fn) = An^*GIPS(f0) + Bn^*GBS(f0) + Cn$

GIPS(f0) and GBS(f0) are application characteristics measured at the nominal frequency (f0). An, Bn and Cn are measured for the given platform at all possible frequencies.

This model hides the dependency of GIPS and GBS of a given workload with the clock frequency.

Power consumption model: Coefficients

PWR(fn) = An*GIPS(f0) + Bn*GBS(f0) + Cn

Platform	Clock	An	Bn	Cn
p750 ST	2.5	8.4	4.3	666.3
p750 ST	3.55	22.3	4.3	877.1

Power consumption on p 750

- on p750 (normal= 3.55 GHz, power save = 2.5 GHz

					Average	e Power		core + DII	MM based
	CPI GIPS	GBS	٦	Total	Core	DIMM	Static	Projection	Error
416.games	0.59	6.05	0.06	984	724	110	151	1012	2.85%
433.milc	2.74	1.30	40.00	1084	646	268	171	1080	0.41%
435.groma	0.75	4.75	0.98	1002	705	144	153	987	1.52%
437.leslie3	0.91	3.90	39.42	1141	699	266	176	1135	0.47%
444.namd	0.72	4.95	0.36	1001	717	135	149	989	1.19%
454.calculi:	0.53	6.74	3.07	1041	747	142	151	1041	0.01%
459.Gemsł	1.96	1.82	38.54	1070	645	264	161	1085	1.43%
481.wrf	0.58	6.15	29.15	1147	750	234	163	1141	0.54%
				16.6%	18.4%	13.8%	2.4%	Avg.	1.05%

				Average Power					core + DIMM based		
	CPI GIPS	GBS	Total	Core	DIMM	Static	Proje	ction E	Error		
416.games	0.61	4.06	0.06	665	423	103	138	701	5.41%		
433.milc	1.94	1.28	39.11	841	416	265	160	847	0.67%		
435.groma	0.75	3.34	0.69	704	417	143	144	697	1.01%		
437.leslie3	0.65	3.84	38.78	874	453	264	157	867	0.88%		
444.namd	0.72	3.48	0.25	695	423	131	141	697	0.19%		
454.calculi:	1.07	2.33	2.18	721	441	138	142	695	3.53%		
459.Gemsł	1.44	1.73	37.58	832	417	261	154	844	1.43%		
481.wrf	0.55	4.51	21.30	811	449	210	152	796	1.80%		
				31.6%	8.6%	18.5%	2.5% <mark>Avg.</mark>		1.87%		

Performance and Power trade-off on p750

- on p750 using power save
 - Memory bound workloads have ~3% performance degradation while power mem bound and energy saving is ~20%.
 - Cpu bound workloads suffer 30 to 40% performance degradation leading to <u>cpu bound</u> no/little energy saving

	2.5 GHz	2.5 GHz	2.5 GHz	2.5 GHz	2.5 GHz	3.55GHz	3.55GHz	3.55GHz	3.55GHz	3.55GHz	Delta	Saving	Saving
workload	CPI	BW(GB/s)	Runtime	Power	Energy	CPI	BW(GB/s)	Runtime	Power	Energy	Perf	Power	Energy
416.gamess	0.61	0.06	1348.00	664.60	3.9	0.59	0.06	956.0	984.3	4.1	-41.0%	32.5%	4.8%
433.milc	1.94	39.11	575.00	840.96	2.1	2.74	40.00	563.0	1084.2	2.6	-2.1%	22.4%	20.8%
435.gromacs	0.75	0.69	738.00	704.45	2.3	0.75	0.98	517.0	1002.5	2.2	-42.7%	29.7%	-0.3%
437.leslie3d	0.65	38.78	487.00	874.41	1.8	0.91	39.42	480.0	1140.7	2.4	-1.5%	23.3%	22.2%
444.namd	0.72	0.25	521.00	695.27	1.6	0.72	0.36	365.0	1001.1	1.6	-42.7%	30.5%	0.9%
454.calculix	1.07	2.18	625.00	720.68	2.0	0.53	3.07	442.0	1041.0	2.0	-41.4%	30.8%	2.1%
459.GemsFDTD	1.44	37.58	799.00	831.81	2.9	1.96	38.54	776.0	1069.6	3.6	-3.0%	22.2%	19.9%
481.wrf	0.55	21.30	641.00	811.06	2.3	0.58	29.15	474.0	1147.3	2.4	-35.2%	29.3%	4.4%

p750, from 3.55 to 2.5 GHz (downclocking)

Conclusion

- We don't need a power meter !!!
- We can predict the power consumption at different frequencies with reasonable accuracy
 - => Power & Energy Aware Scheduling