

Barcelona Supercomputing Center Centro Nacional de Supercomputació

### Utilization Driven Power-Aware Parallel Job Scheduling

### Maja Etinski Julita Corbalan Jesus Labarta Mateo Valero

{maja.etinski,julita.corbalan,jesus.labarta,mateo.valero}@bsc.es

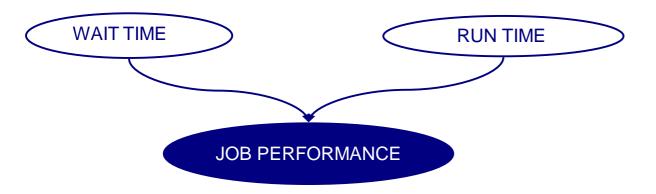
### Motivation

### Performance increase has been followed by even higher increase in power consumption

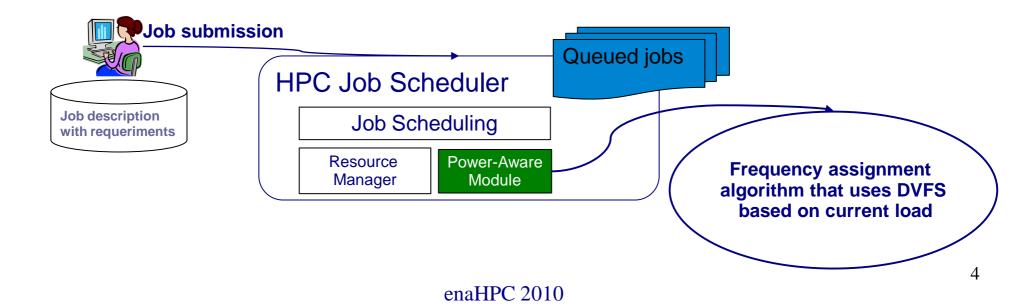

| Rank         | Site                                                                                      |                                                | Computer/Year Vendor                                                                                                               |                                                                                                | Cores                                   | Rmax                                                      | Rpeak   | Power   |                        |
|--------------|-------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|---------|---------|------------------------|
| 1            |                                                                                           | Oak Ridge National Laboratory<br>United States |                                                                                                                                    | Jaguar - Cray XT5-HE Opteron Six<br>Core 2.6 GHz / 2009<br>Cray Inc.                           |                                         | 224162                                                    | 1759.00 | 2331.00 | 6950.60                |
| 2            |                                                                                           | nal Supercompt<br>zhen (NSCS)<br>a             | uting Centre in                                                                                                                    | Nebulae - Dawning TC3600 Blade,<br>Intel X5650, NVidia Tesla C2050<br>GPU / 2010<br>Dawning    |                                         | 120640                                                    | 1271.00 | 2984.30 | )                      |
| 3            | DOE/NNSA/LANL<br>United States                                                            |                                                | Roadrunner - BladeCenter<br>QS22/LS21 Cluster, PowerXCell 8i<br>3.2 Ghz / Opteron DC 1.8 GHz,<br>Voltaire Infiniband / 2009<br>IBM |                                                                                                | 122400                                  | 1042.00                                                   | 1375.78 | 2345.50 |                        |
| 4            | National Institute for Computational<br>Sciences/University of Tennessee<br>United States |                                                | Kraken XT5 - Cray XT5-HE (<br>Six Core 2.6 GHz / 2009<br>Cray Inc.                                                                 | 98928                                                                                          | 831.70                                  | 1028.85                                                   |         |         |                        |
| 5            | Forschungszentrum Juelich (FZJ)<br>Germany                                                |                                                | JUGENE - Blue Gene/P Solu<br>2009<br>IBM                                                                                           | tion /                                                                                         |                                         |                                                           |         | 2268.00 |                        |
| Green<br>Ran | 1.4                                                                                       | MFLOPS/W                                       |                                                                                                                                    | Site*                                                                                          |                                         | Computer*                                                 |         |         | Total<br>Power<br>(kW) |
| 1            |                                                                                           | 773.38                                         | Forschungszer                                                                                                                      | trum Juelich (FZJ)                                                                             |                                         | QPACE SFB TR Cluster, PowerXCell<br>8i, 3.2 GHz, 3D-Torus |         | erXCell | 57.54                  |
| 1            | 1 773.38 Universitaet                                                                     |                                                | Universitaet Re                                                                                                                    | gensburg                                                                                       | 12:0% Since S                           | QPACE SFB TR Cluster, PowerXCel<br>8i, 3.2 GHz, 3D-Torus  |         |         | 57.54                  |
| 1            |                                                                                           | 773.38                                         | Universitaet Wuppertal                                                                                                             |                                                                                                | 0.0000000000000000000000000000000000000 | QPACE SFB TR Cluster, PowerXCell<br>8i, 3.2 GHz, 3D-Torus |         |         | 57.54                  |
| 4            |                                                                                           | 492.64                                         | National Super<br>(NSCS)                                                                                                           | ercomputing Centre in Shenzhen<br>CB60-G2 cluster, Intel Xeon 5650<br>nVidia C2050, Infiniband |                                         |                                                           | 2580    |         |                        |
| 5            | 5 458.33 DOE/NNSA/LAN                                                                     |                                                | L                                                                                                                                  | BladeCenter QS22/LS21 Cluster,<br>PowerXCell 8i 3.2 Ghz / Opteron<br>DC 1.8 GHz, Infiniband    |                                         |                                                           |         | 276     |                        |

**Top500** 

Green500


enaHPC 2010

### Power reduction approaches in HPC

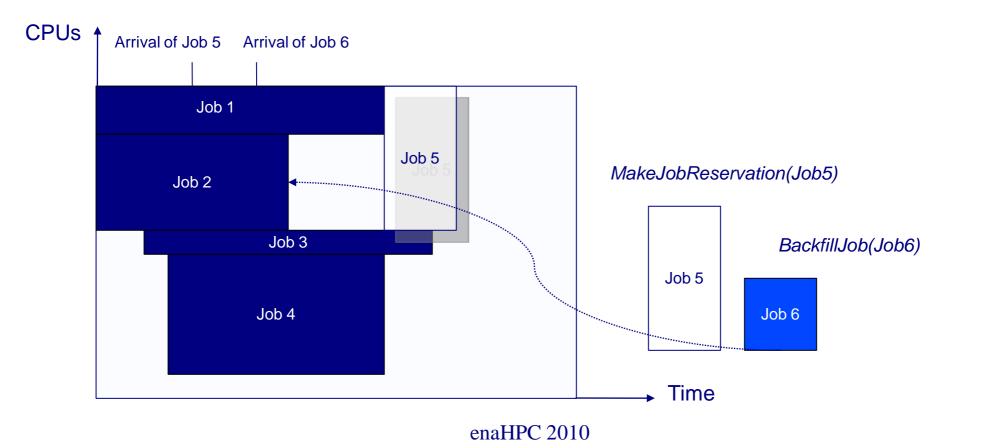



### Power-Aware Parallel Job Scheduling

• Job performance in HPC center depends on two components:



Job scheduler has a global view of the whole system:




### Outline

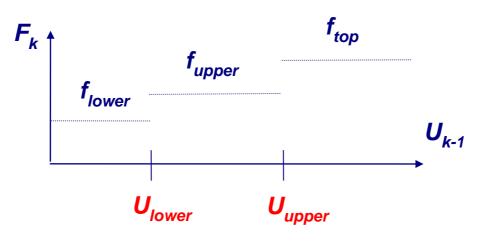
- Parallel job scheduling:
  - the EASY backfilling policy
  - frequency assignment
- Power and run time modeling:
  - how does frequency scaling affect power dissipation and execution time?
- Evaluation:
  - experimental methodology (simulator, workloads, policy parameters)
  - results
  - evaluation of system size increase

### The EASY backfilling policy

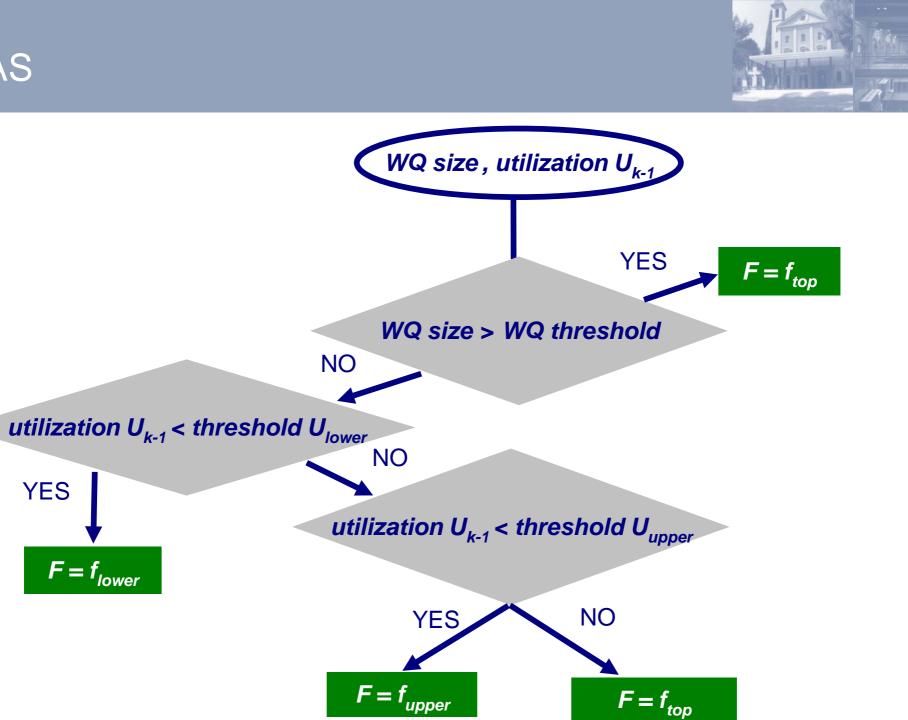
- Jobs are executed in FCFS order except when the first job in the wait queue can not start
- Users have to submit an estimation of job's runtime requested time
- When the first job in the WQ can not start, a reservation is made for it based on requested times of running jobs
- A job is executed before previously arrived ones only if it does not delay the first job in the queue



### When to use DVFS? Which frequency?


- Use of DVFS during period of low system activity
- When utilization is low, impact on performance is minimal (normally there are no queued jobs)
- Majority of workloads have average systems utilizations in range 45% 75% (Parallel Workload Archive)
- Transient periods of low load (over night and holidays)
- Two levels of control:
  - system utilization
  - number of jobs in the wait queue
- Frequency assignment algorithm can be applied with any parallel job scheduling policy (Industrial strength schedulers are usually based on backfilling policies)

### Frequency assignment


- Frequency assigned once (at jobs start time) for entire job execution
- Utilization is computed for each interval T:

$$U_j = \frac{\sum_{k=1}^{N_{jobs}} Proc_k * RunTime_k}{N_{proc} * T}$$

- If there are more than WQ<sub>threshold</sub> jobs in the wait queue no frequency scaling will be applied
- Otherwise, job started during interval  $J_k$  runs at frequency F



UPAS



enaHPC 2010

### **Power Model**

- CPU power presents major portion of total system power
- It consists of dynamic and static power:

 $\boldsymbol{P_{cpu}} = \boldsymbol{P_{dynamic}} + \boldsymbol{P_{static}}$ 

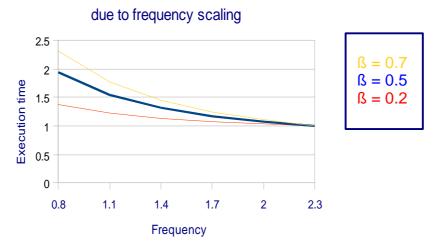
$$P_{dynamic} = AcfV^2$$

 $P_{static} = \alpha V$ 

• Fraction of static in total CPU power is a model parameter:

→ 
$$P_{static}(V_{top}) = X(P_{static}(V_{top}) + P_{dynamic}(t_{top}, V_{top}))$$
  
(X = 25% in our experiments)

- Two scenarios for idle CPUs:
  - → idle processors do not consume power
  - → idle CPUs are at the lowest frequency with low activity factor
- Average activity factor assumed to be same for all jobs
- Activity factor of idle processors 2.5 times lower than running activity
- DVFS gear set :


| f       | 0.80 | 1.10 | 1.40 | 1.70 | 2.00 | 2.30 |
|---------|------|------|------|------|------|------|
| V       | 1.00 | 1.10 | 1.20 | 1.30 | 1.40 | 1.50 |
| Norm(P) | 0.28 | 0.38 | 0.49 | 0.63 | 0.80 | 1.00 |

## **Time Model**

- Execution time dependence on frequency is captured by the following model:

 $F(f,\mathcal{B})=T(f) / T(f_{top}) = \mathcal{B}(f_{top} / f - 1) + 1$ 

[Hsu, Feng SC05: A Power-Aware Run Time System for High-Performance Computing]



#### Execution time penalty

> *B* is assumed to have the following distributions:

| Number of CPUs     | Distribution          |  |  |  |
|--------------------|-----------------------|--|--|--|
| less or equal to 4 | <b>N</b> (0.5,0.01)   |  |  |  |
| between 4 and 32   | N(0.4,0.01)           |  |  |  |
| more than 32       | <b>N</b> (0.3,0.0064) |  |  |  |

### **Evaluation**

• C++ event driven parallel job scheduling simulator has been upgraded

#### Alvio simulator

### Policy parameters:

utilization thresholds: $U_{lower} = 50\%$  $U_{upper} = 80\%$ reduced frequencies: $f_{lower} = 1.4 \text{ GHz}$  $f_{upper} = 2.0 \text{ GHz}$ utilization computation interval:T = 10 minwait queue length threshold: $WQ_{threshold} = 0, 4, 16, NO$ 

Metric of job performance – Bounded Slowdown

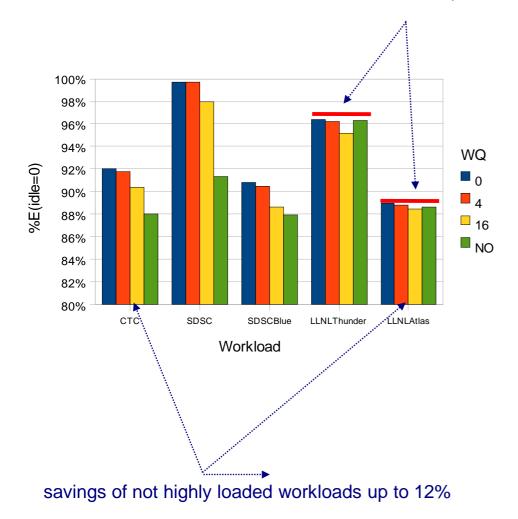
$$BSLD = max \left( \frac{WaitTime + RunTime}{max(RTthreshold, RunTime)}, 1 \right)$$

• BSLD at frequency f

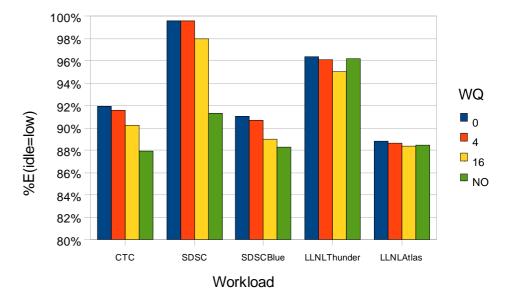
$$BSLD = max \left( \frac{WaitTime + NewRunTime(J, f)}{max(RTthreshold, RunTime)}, 1 \right)$$

Policy parameters

Metric of performance

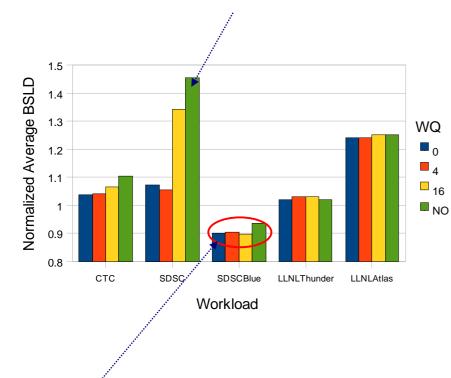

### Workloads



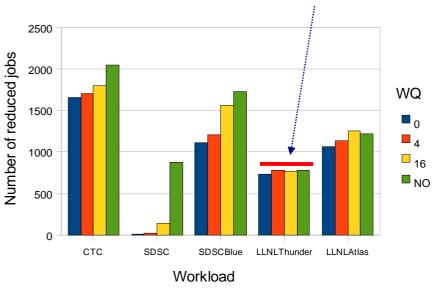

• Five workloads from production use have been simulated:

|                                                           | Workload - #CPUs                                       | Avg Util | Avg LR | %T below U                               | % T below U <sub>lower</sub> |
|-----------------------------------------------------------|--------------------------------------------------------|----------|--------|------------------------------------------|------------------------------|
| Cornell Theory Center                                     | CTC - 430                                              | 70%      | 1.61   | 50%                                      | 28%                          |
| -large jobs with relatively<br>low level of parallelism   | SDSC – 128                                             | 85%      | 8.17   | 26%                                      | 5%                           |
| low level of parallelish                                  | SDSCBlue – 1152                                        | 69%      | 2.31   | 55%                                      | 26%                          |
|                                                           | LLNLThunder – 4008                                     | 80%      | 0.80   | 29%                                      | 11%                          |
|                                                           | LLNLAtlas – 9216                                       | 75%      | 0.94   | 26%                                      | 19%                          |
| - 5                                                       | ence Livermore Nati<br>Lab<br>mall to medium size jobs |          | Law    | rence Livermo<br>Lab<br>- large paralle  |                              |
| San Diego Supercomputing<br>Center<br>- no sequential job |                                                        |          |        | <b>load archive</b><br>huji.ac.il/labs/p | arallel/workload             |

### Results: Energy - Original System Size

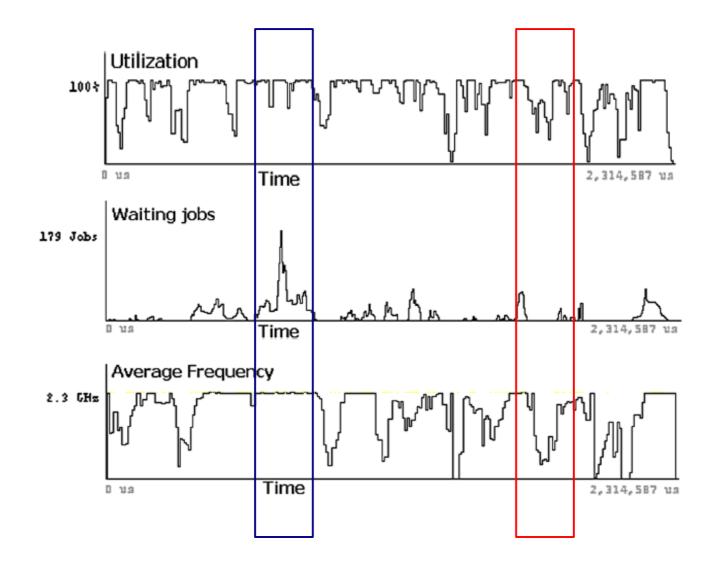



#### short wait queues




very similar results for both energy scenarios

#### high penalty in the least conservative case for highly loaded workload

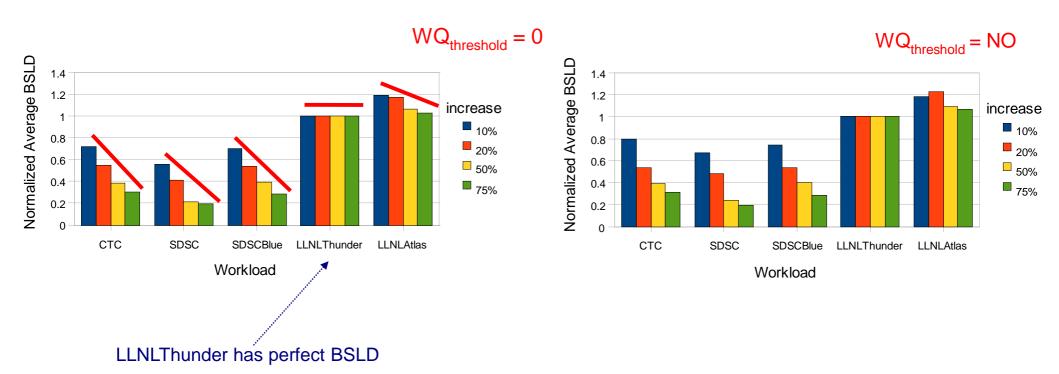



WQ threshold has almost no impact



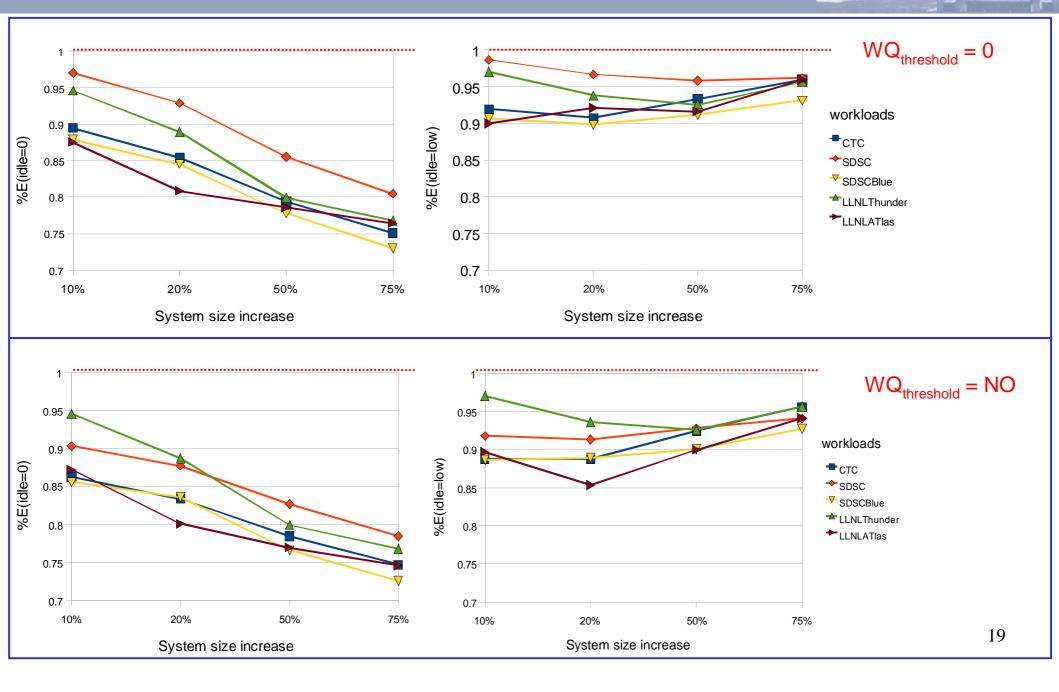
an increase in number of backfilled jobs

### Average frequency - SDSCBlue




### DVFS system size

- Frequency scaling is applied when load/utilization is low
- More CPUs -> lower load/utilization -> more opportunities for DFVS application
- DVFS scaling leads to lower power
- More CPUs -> lower CPU energy
- More CPUs -> better job performance due to lower wait times
- Is it possible to achieve both? (lower energy and higher performance)
- Following system sizes have been considered in the evaluation process:
  - ➡ 10%, 20%, 50% and 75% bigger systems


### System Oversizing: Performance

shorter wait time -> higher performance



CTC, SDSC, SDSCBlue achieve performance better than original for only 10% increase in system size

### System Oversizing: Energy



### Conclusions

- Use of DVFS at the level of parallel job scheduling has been proposed
- A power-aware parallel job scheduling policy based on system utilization has been evaluated
- Trade-off between job performance and energy
- For less loaded workloads it is possible to save up to 12% of energy without affecting average BSLD significantly
- Modest energy savings in highly loaded workloads result in high performance penalty
- An analysis of system dimension has been performed showing that bigger DVFS systems can results in lower CPU energy consumption and higher job performance



Barcelona Supercomputing Center Centro Nacional de Supercomputación

### Utilization Driven Power-Aware Parallel Job Scheduling

# Thank you for your attention!