

Center for Information Services and High Performance Computing (ZIH)

Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks

EnA-HPC, Sept 16th 2010

Daniel Hackenberg, Robert Schöne, Daniel Molka, Matthias S. Müller, Andreas Knüpfer

(mailto: daniel.hackenberg@tu-dresden.de)

Motivation: Power Consumption Extrapolation

Daniel Hackenberg

High Performance Computing

- The HPC community needs power consumption benchmarks!
- How about the Green500 list?
- TU Dresden LNXI Cluster reported at June 2008 list:
 - 2576 AMD Opteron cores, 2.6 GHz
 - Green500 power consumption: 206 kW (peak)
 - Actual power consumption: ~300 kW

Run Rules

Run rules for measuring the power and energy consumption of qualified high-end clusters: We will be updating and reposting this information soon. For more information email info AT green500.org

Tutorials

Power Measurement Tutorial for the Green500 List [pdf]

R. Ge, X. Feng, H. Pyla, K. Cameron, and W. Feng.

Source: green500.org

• Power extrapolation: $P = N \cdot P_{unit}$

Assuming that

- (1) the computational workload during the Linpack benchmark is well-balanced across all units, and
- (2) all units are identical and consume the same amount of power for the same workload.

- Industry-standard benchmark that
 - Evaluates the power and performance characteristics of
 - Volume server class and multi-node class computers
- Very mature benchmark methodology
 - Dedicated power daemon for accepted power meters only
 - Records current, voltage, power factor, temperature
 - Very strict run rules
- BUT
 - Java Workload
 - Strongly VM dependent
 - Servers typically run Windows

Center for Information Services & High Performance Computing

An HPC benchmark with a sophisticated power measurement methodology

SPEC MPI2007

- Industry-standard HPC benchmark
- Averages the results of 12 MPI applications that are common in HPC
- Medium data set scales up to 128 MPI ranks, runs up to 512 ranks
- Large data set scales up to 2048 ranks, tested up to 4096 ranks
- Challenge:
 - Companies probably do not want to measure each node
 - We need run rules that ensure that hardware vendors do not cheat (too much)

- Test System: IBM iDataPlex
 - 32 nodes, each with 12x 4 GB DDR3, 250 GB HDD, QDR IB
 - 64x Intel Xeon E5530, 2.4 GHz, 80W TDP
 - Turbo Boost up to 2.66 GHz, HyperThreading off
- Power Meter
 - 1x ZES LMG 450 (4 channel)
 - 1x ZES LMG 95 (1 channel)
 - Measuring compute nodes only, no switches, no I/O
- Benchmark: SPEC MPI2007 V2.0
 - medium data set
 - Intel Compiler Suite 11.1, Open MPI 1.4.1

Test System & Power Measurements

Daniel Hackenberg

Eenter for Information Services & High Performance Computing

Test System & Power Measurements

Daniel Hackenberg

Center for Information Services & High Performance Computing Comparing the power consumption of

- a 2005 LNXI dual core Opteron Cluster
- a 2010 IBM iDataPlex quad core Nehalem Cluster

	Linpack	107.leslie3d	104.milc	Idle
Cluster 2005	100 %	92 %	87 %	65 %
Cluster 2010	100 %	83 %	71 %	26 %

Per-Node Power Consumption Variation: Idle

Idle variations become bigger as soon as you swap broken parts

We have seen >12% in our Opteron Cluster

Daniel Hackenberg

High Performance Computing

Per-Node Power Consumption Variation: Linpack

Relative per-node power variation of idle and Linpack similar

Power Consumption Variation of 256 Intel Nehalem Cores

Power Consumption Variation of an IB Switch

IB switch power consumption independent of the IB network traffic

Daniel Hackenberg

High Performance Computing

- 130.socorro has a nice repetitive pattern (variation of ~1 KW)
- 128.GAPgeofem (Geophysical FEM) runs serial code for ~2/3 of the runtime
- 122.tachyon (ray tracing) has three groups of MPI ranks that differ in runtime due to the IB network setup

Daniel Hackenberg

High Performance Computing

Power Measurement Software Infrastructure

- Node 0-29 (240 cores) measured by one power meter
- Node 30+31 (16 cores) measured by a second power meter
- IB switch is powered separately

- I6 MPI rank groups, each group has 16 MPI ranks
- MPI rank groups cycle through the 16 double-nodes

Power Consumption of MPI Rank Groups

8 SPEC MPI2007 benchmarks show very small power variations

Power Consumption of MPI Rank Groups

4-5 SPEC MPI2007 benchmarks show significant power variations

Power Consumption Extrapolation Correctness

- There is no single MPI rank group that can be used for a good extrapolation
- For SPEC MPI2007, using the first rank group(s) usually works (you do not underestimate, except for tachyon)

Conclusions

- Power consumption variations are growing, therefore
- Power consumption extrapolation is difficult
- We need industry standard HPC benchmarks that
 - Include a power metric
 - Have well-defined run rules
 - Hopefully do not require companies to buy one power meter per node
- SPEC OMP/MPI2007 aims to fill that gap
- SPEC OMP currently in an early stage of defining run rules
- SPEC MPI2007 will take a bit longer

Conclusions

- Power consumption variations are growing, therefore
- Power consumption extrapolation is difficult
- We need industry standard HPC benchmarks that
 - Include a power metric
 - Have well-defined run rules
 - Hopefully do not require companies to buy one power meter per node
- SPEC OMP/MPI2007 aims to fill that gap
- SPEC OMP currently in an early stage of defining run rules
- SPEC MPI2007 will take a bit longer

http://www.springerlink.com/content/bg6j875q82161605/

