

# **Brainware for Green HPC**

# ENA-HPC

International Conference on Energy-Aware High Performance Computing September 07–09, 2011 Hamburg

Christian Bischof

christian.bischof@tu-darmstadt.de

#### Dieter an Mey, Christian Iwainsky

{anmey,iwainsky}@rz.rwth-aachen.de





- TCO of HPC and Impact of Brainware
- Brainware Complexity
- HECTOR dCSE Success Stories
- A Throughput Case Study
- Summary

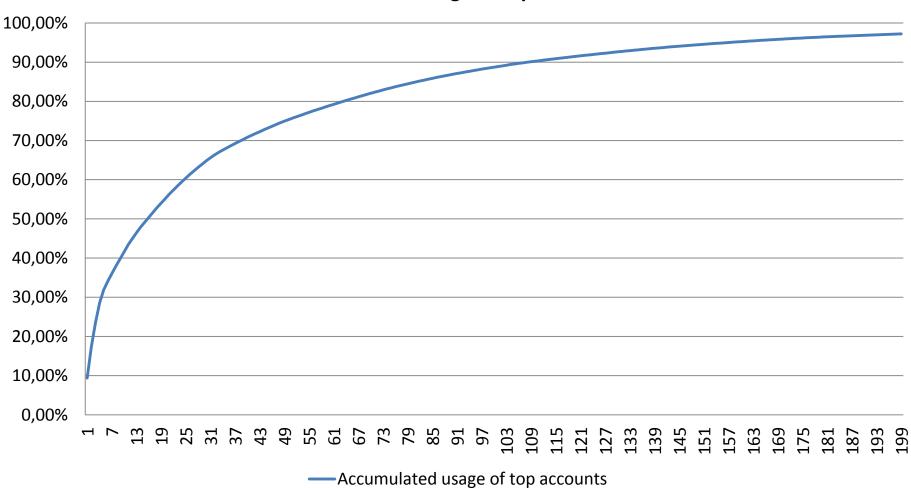




- TCO of HPC and Impact of Brainware
- Brainware Complexity
- HECTOR dCSE Success Stories
- A Throughput Case Study
- Summary

### **Total Cost of Ownership for HPC as a Service**

# **RNTHAACHEN** UNIVERSITY


#### Assumptions

- ► 2 Mio € HW investment per year
- 5 years lifetime with 4 years maintenance through vendor
- 850 KW,
  PUE=1.5,
  0.14€ per kWh
  => 1.5 Mio € per year
- ISV software provided by users
- Commercial batch system
- Free Linux distribution
- 4 FTE are for "brainware"

|                      | costs per year | percentage |
|----------------------|----------------|------------|
| Building             |                |            |
| ( 7.5Mio / 25y)      | 300.000 €      | 5%         |
| Investment compute   |                |            |
| servers              | 2.000.000€     | 36%        |
| hardware maintenance | 800.000 €      | 14%        |
| Power                | 1.564.000 €    | 28%        |
| Linux                | 0€             | 0%         |
| Batch system         | 100.000        | 2%         |
| ISV software         | 0€             | 0 %        |
| HPC software         | 50.000 €       | 1 %        |
| Staff 12 FTE         | 720.000€       | 13%        |
| Sum                  | 5.354.000 €    | 100%       |

## Code Performance does not matter for TCO calculation

#### **Usage Distribution**



#### Accumulated usage of top accounts

Brainware for Green HPC

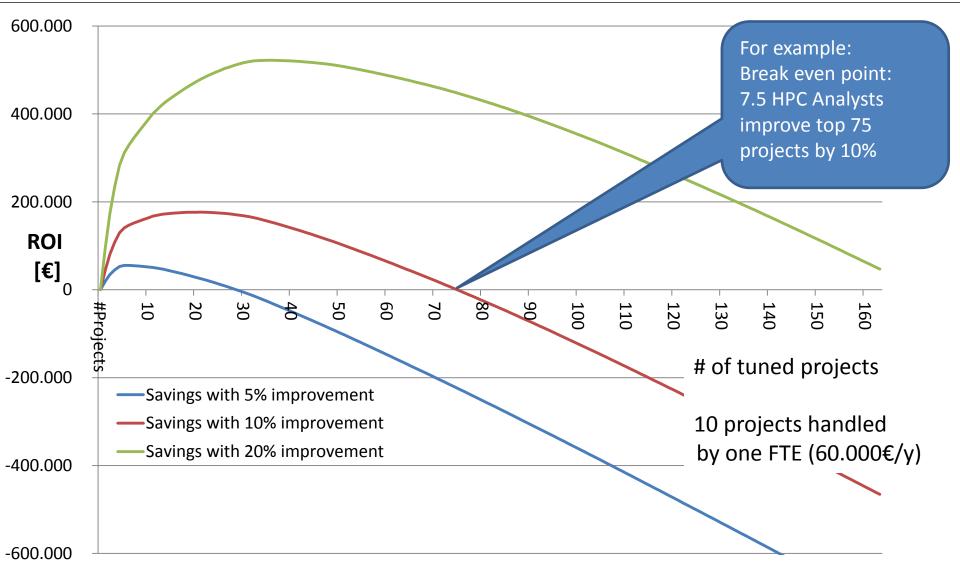




#### Start tuning top user projects first

- ▶ 15 projects account for 50% of the load
- ▶ 64 projects account for 80% of the load

#### Assumptions


- It takes 2 months to tune one project
- One analyst can handle 5 projects per year
- A projects profits for 2 years
- As a consequence one HPC expert

can on average take care of 10 projects at a time in a year

One FTE costs 60,000€

#### **Does it pay to hire HPC Experts? – 2 of 2**

# **RNTHAACHEN** UNIVERSITY



#### **The Impact of Brainware**

**RWTHAACHEN** UNIVERSITY

- Brainware: Tuning Experts enhancing software performance and software life cycle in light of changing operating environments.
- Even very moderate improvements in computational efficiency result in considerable savings.
- For example, a rather minuscule improvement of 5% on the top 30 projects "pays" for three HPC specialists.
  - If the performance is improved by 20 %, 0.5 Mio € are saved.
- Energy savings account for a substantial part of the gain thus realized, i.e. brainware is an essential ingredient of green computing.





- TCO of HPC and Impact of Brainware
- Tuning Complexity
- HECTOR dCSE Success Stories
- A Throughput Case Study
- Summary

#### Opportunities for Tuning without Code Access

# **RNTHAACHEN** UNIVERSITY

#### Sanity Check

- Use HW Counters
- Employ Performance Analysis Tools
- IO behavior
- System call statistics

#### Hardware

- Choose the optimal hardware platform
- File system, IO parameters

#### Parameterization

- Choose optimal number of threads / MPI processes
- Thread / Process Placement (NUMA)
- Mapping MPI topology to hardware topology
- MPI parameterization (buffers, protocols)
- Optimal libraries (MKL ...)

#### Opportunities for Tuning with Code Access

# **RNTHAACHEN** UNIVERSITY

#### Without Code Changes

- Choose the optimal compiler and optimal compiler options
- Autoparallelization, compiler profile / feedback
- Adapt dataset partitioning / blocking load balancing

### • Cache Tuning

padding, blocking, loop based optimization techniques, inlining/outlining

#### MPI optimization

- Avoid global synchronization, coalesce communications
- Hide / reduce communication overhead, Unblocking communications

#### OpenMP optimization

- Extend parallel regions, avoid false sharing
- NUMA optimization: first touch, migration
- In vogue: Add OpenMP to an MPI code to improve scalability
- Of Course: Crucial to choose the optimal algorithm
  - To be handled by or with the domain expert

#### **Building Brainware**

**RNTHAACHEN** UNIVERSITY

- The skills just shown are typically not taught to code developers.
- It takes experience and skill to pick the most efficient tuning path & tools on a particular hardware platform.
- As academic computing is typically "free", appreciation for those skills is often lacking.
- As a result, "tuning expert" is a rare career path at academic institutions.
- Unless brainware becomes a standard ingredient in HPC operations (i.e. software is viewed as part of HPC infrastructure), money is being wasted.





- TCO of HPC and Impact of Brainware
- Tuning Complexity
- HECTOR dCSE Success Stories
- A Throughput Case Study
- Summary

#### HECToR Computational Science & Engineering Service



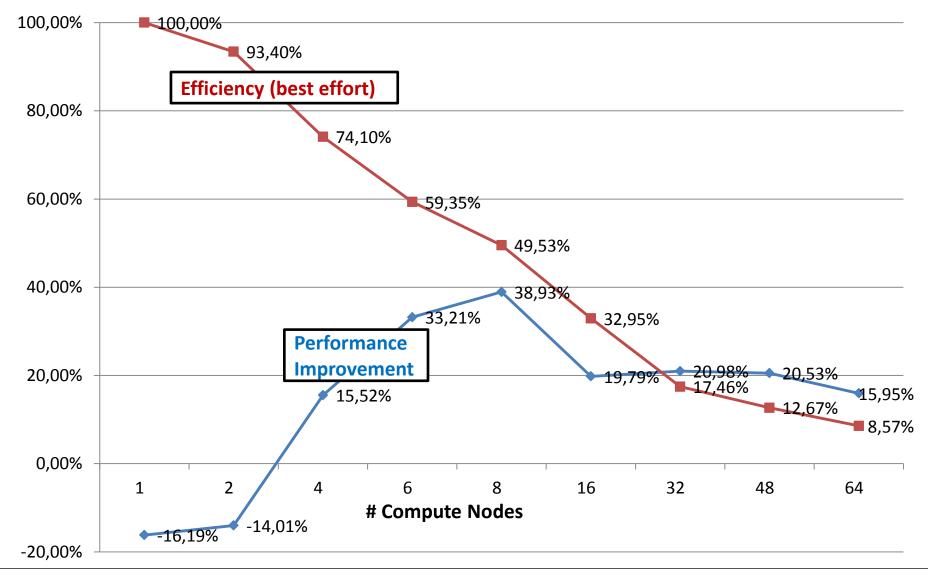
- HECTor is the UK supercomputer service (Cray XE6 System). http://www.hector.ac.uk/cse
- Part of the procurement was a service to make sure that users were supported/trained in making good use of the hardware
- This bid was won by the Numerical Algorithms Group (NAG).
- Central component (staff at NAG):
  - Advice on using the system, non-invasive tuning, profiling
- Distributed component (staff on-site)
  - Panel reviews proposals for code improvement (software engineering, not implementation of new science).
  - Early grants up to 2 yrs, currently up to 1 yr.
  - Contracts (not grants) awarded

#### HECToR Distributed CSE Service Success Stories

# **RNTHAACHEN** UNIVERSITY

| Code              | Domain                           | Effect                               | Effort                               | Saving               |  |
|-------------------|----------------------------------|--------------------------------------|--------------------------------------|----------------------|--|
| CASTEP            | Key Materials Science            | 4x Speed and 4x Scalability          | 8 PMs                                | 320k - 480k £ (p.a.) |  |
| NEMO              | Oceanography                     | Speed and I/O-Perform.               | 6 PMs                                | 95 k £ (p.a.)        |  |
| CASINO            | Quantum Monte-<br>Carlo          | 4x Performance and<br>4x Scalability | 12 PMs                               | 760 k £ (p.a.)       |  |
| CP2K              | Materials Science                | 12 % Speed and Scalability           | 12 PMs                               | 1500 k £ (in total)  |  |
| GLOMAP/<br>TOMCAT | Atmospheric<br>Chemistry         | 15 % Performance                     | ?                                    |                      |  |
| CITCOM            | Geodynamic Thermal<br>Convection | 30% Performance                      | ?                                    | significant          |  |
| Incompact<br>3D   | Fluid Turbulence                 | 6.75x Speed and 16x Scala-<br>bility | 12 PMs                               |                      |  |
| ChemShell         | Catalytic Chemistry              | 8x Performance                       | 9 PMs                                |                      |  |
| Fluidity-<br>ICOM | Ocean Modelling                  | Scalability                          | ?                                    |                      |  |
| DL_POLY_3         | Molecular Dynamics               | 20x Performance                      | 6 PMs                                |                      |  |
| CARP              | Heart Modelling                  | 20x Performance http://ww            | http://www.hector.ac.uk/cse/reports/ |                      |  |






- TCO of HPC and Impact of Brainware
- Tuning Complexity
- HECTOR dCSE Success Stories
- A Throughput Case Study
- Summary

### **Impact of Brainware on Throughput**

- **RNTHAACHEN** UNIVERSITY
- XNS code, developed at the Institute for Computer Analysis of Technical Systems at RWTH Aachen University (Prof. M. Behr, www.cats.rwth-aachen.de)
- Parallel finite element (FE) solver
- Satisfactory scalability on up to 4096 processors on a Blue Gene/L system using MPI parallelization.
- Also extensively used in parameter studies involving smaller problems on a few cluster nodes.
- In an effort off roughly six weeks, nine parallel regions were introduced into the most compute intense program parts.
- Experimental Results on QDR Infiniband-Cluster, nodes with two Nehalem EP processors each (3 GHz, 4 cores per processor chip). Serial time ~ 20 Minutes.

#### **XNS: Impact of Hybrid Parallelization**



Bischof, an Mey, Iwainsky

Brainware for Green HPC

- Interested in the impact of code tuning on configurations where the parallel efficiency is relatively high (i.e. adding hardware is an economically sensible way to improve code performance)
- If we accept a decline of efficiency down to 50 percent, then the tuning effort delivers an improvement of up to 39 percent on 8 nodes.

# So brainware is as important for capacity computing as it is for capability computing.





- TCO of HPC and Impact of Brainware
- Tuning Complexity
- HECTOR dCSE Success Stories
- A Throughput Case Study
- Summary

#### Summary



- We need to take a holistic view of cost effectiveness and computing efficiency: It makes more sense to invest in brainware rather than buy more inefficiently used "green" hardware.
- Higher investment in brainware pays off.
- **HPC** experts are a rare species requiring extensive training.
- Current and upcoming architectures require even more expertise (e.g. vector/multicore/distributed/cloud programming paradigms) so the brainware component becomes ever more important.
- HPC funding policies, educational curricula, and career development paths must recognize need for brainware.



#### Thanks to

- N. Berr, J. Dietter, A. ElShekh, I. lerotheou, C. lwainsky, L. Jerabkova,
- S. Johnson, A. Gerndt, J.H. Goebbert, T. Haarmann, I. Hörschler, P. Leggett,
- D. Schmidl, Z. Peng, H. Pflug, T. Preuß, S. Sarholz, S. Siehoff, A. Spiegel,

A. Wolf