-
L

INTERNATIONAL CONFERENCE ON
ENERGY-AWARE HIGH PERFORMANCE COMPUTING

DVFS-Control Techniques for Dense Linear Algebra

Operations on Multi-Core Processors

Pedro Alonso!, Manuel F. Dolz?, Francisco D. lgual?,
Rafael Mayo?, Enrique S. Quintana-Orti?

UNIVERSITAT
POLITECNICA 8] UNIVERSITAT

DE VALENCIA 5 JAUME-I

September 07-09, 2011, Hamburg (Germany)

Motivation

@ High performance computing:

@ Optimization of algorithms applied to solve complex problems

@ Technological advance = improve performance:

@ Processors works at higher frequencies
@ Higher number of cores per socket (processor)

@ Large number of processors and cores = High energy consumption

@ Methods, algorithms and techniques to reduce energy consumption
applied to high performance computing.

@ Reduce the frequency of processors with DVFS techniques

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Outline

o Introduction
e Dense linear algebra operations

9 Slack Reduction Algorithm
@ Introduction
@ Application
@ Previous steps
@ Slack reduction

Race-to-Idle Algorithm

©0

Experimental results

@ Simulator

@ Benchmark algorithms
@ Environment setup

@ Results

e Conclusions

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction

Introduction

@ Scheduling tasks of dense linear algebra algorithms
@ Examples: Cholesky, QR and LU factorizations

@ Energy saving tools available for multi-core processors
@ Example: Dynamic Voltage and Frequency Scaling (DVFS)

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction

Introduction

@ Scheduling tasks of dense linear algebra algorithms
@ Examples: Cholesky, QR and LU factorizations

@ Energy saving tools available for multi-core processors

@ Example: Dynamic Voltage and Frequency Scaling (DVFS)

Scheduling tasks + DVFS

Power-aware scheduling on multi-core processors

@ Our strategies:

@ Reduce the frequency of cores that will execute non-critical tasks to decrease idle
times without sacrifying total performance of the algorithm

@ Execute all tasks at highest frequency to “enjoy” longer inactive periods

4

Energy savings

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Dense linear algebra operations

Dense linear algebra operations

LU factorization:

@ Factor
A= LU,

L/U € R™" unit lower/upper triangular matrices

@ Two algorithms for LU factorization:

o LU with partial (row) pivoting (traditional version)
e LU with incremental pivoting

@ “Rapid development of high-performance out-of-core solvers for
electromagnetics”
T. Joffrain, E.S. Quintana, R. van de Geijn
State-if-the-Art in Scientific Computing - PARA 2004
Copenhaguen (Denmark), June 2004
Later called “Tile LU factorization” or “Communication-Avoiding LU
factorization with flat tree”.

@ We consider a partitioning of matrix A into blocks of size b x b

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Dense linear algebra operations

Dense linear algebra operations

LU factorization with partial (row) pivoting

for k =1:sdo

Akis,k = Licis k- Ui _ (s —k+ %)b3 flops

forj=k+1:sdo

Ay — Lt Ay b* flops

Akt1:s,j < Akt1is,j — Aktlis,k - Ay MATRIX-MATRIX PRODUCT 2(s — k)b3 flops

end for
end for

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Dense linear algebra operations

Dense linear algebra operations

LU factorization with partial (row) pivoting

for k =1:sdo
Akis,k = Licis k- Ui _ (s —k+ %)b3 flops
forj=k+1:sdo
 TRIANGULAR SOLVE b* flops

Akj «— L,;(l 'Akj

Akt1:s,j < Akt1is,j — Aktlis,k - Ay MATRIX-MATRIX PRODUCT 2(s — k)b3 flops

end for
end for

DAG with a matrix consisting of 3 x 3 blocks

2
E=

K

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Dense linear algebra operations

Dense linear algebra operations

LU factorization with incremental pivoting

fork=1:sdo
Axk = Lik - Uk
forj=k+1:sdo

Ay Lt Ay

end for
fori=k+1:sdo

A) — (L) Uik 2 x 1 LU FACTORIZATION
Aik Lix

forj=k+1:sdo
Ajj L 1 Ajj
end for

end for
end for

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Dense linear algebra operations

Dense linear algebra operations

LU factorization with incremental pivoting

DAG with a matrix consisting of 3 x 3 blocks

@ Nodes contain execution time of tasks (in milliseconds, ms), for a block
size b = 256 on a single-core of and AMD Opteron 6128 running at 2.00

GHz.
@ We will use this info to illustrate our power-saving approach of the SRA!

DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Pedro Alonso et al

Introduction
Slack Reduction Algorithm Applicat

Sl duction

Slack Reduction Algorithm: Introduction

Obtain the dependency graph corresponding to the computation of a dense
linear algebra algorithm, apply the Critical Path Method to analize slacks and
reducing them with our Slack Reduction Algorithm

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm Al

Slack Reduction Algorithm: Introduction

Obtain the dependency graph corresponding to the computation of a dense
linear algebra algorithm, apply the Critical Path Method to analize slacks and
reducing them with our Slack Reduction Algorithm

The Critical Path Method:

@ DAG of dependencies

@ Nodes = Tasks
@ Edges = Dependencies

@ Times: Early and latest times to start and finalize execution of task T; with cost C;

@ Total slack: Amount of time that a task can be delayed without increasing the total
execution time of the algorithm

@ Critical path: Formed by a succession of tasks, from initial to final node of the graph, with
total slack = 0.

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm Application

Application of CPM to the DAG of the LU factorization with incremental
pivoting of a matrix consisting of 3 x 3 blocks:

[Tk [_C [BB [F [5 |
Giii | 3311 | 0.000 3311 0
Ti21 | 4273 | 3311 8558 | 0973
G2.211 | 5246 | 3311 8.558 0

G2.311 5.246 3.311 11.869 3.311
T-131 4.273 3311 12.842 5.257
T2.321 7.372 8.558 19.241 3311

G2.322 5.246 19.241 24.488 0
T2.332 7.373 24.488 31.861 0
G_333 3.311 31.861 35.171 0
T2.331 7.372 8.558 24.488 8.558
T2.221 7.372 8.558 15.930 0
G222 3.311 15.930 19.241 0

T-232 4.273 19.241 24.488 0.973
T2-231 7.372 8.558 20.214 4.284

Objective: tune the slack of those tasks with S > 0, reducing its execution
frequency and yielding low power usage — Slack Reduction Algorithm

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Slack Reduction Algorithm
Previous steps
SECNE

Slack Reduction Algorithm

Slack Reduction Algorithm

@ Frequency assignment
@ (Critical subpath extraction
© Slack reduction

Pedro Alonso et al VFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm Application

Previ eps

Slack reduction

Slack Reduction Algorithm

Slack Reduction Algorithm

@ Frequency assignment
@ (Critical subpath extraction
© Slack reduction

Freque assignme

Example: LU factorization
with incremental pivoting
of 3x3 blocks:

@ Discrete collection of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz
@ We have obtained execution time of tasks running at each available frequency

Pedro Alonso et al FS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction

Slack Reduction Algorithm Application
Previous steps
Slack reduction

Critical subpath extraction

ritical subpath extraction

Iteration 0
T2231
(7.372)
CP; Tasks Execution time
CPy {G.111,G2.211,T2.221,G 222, G2_322, T2_332, G_333} 35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm Application

Previous steps

Slack reduction

Critical subpath extraction

Critical subpath extracti

Iteration 1 -\
T2.331
(7.372)
G2.311
(5.246)
T-121 T2.321
(4.273) (7.372)
CP; Tasks Execution time
CP, {G.111,G2211,T2.221, G222, G2.322, T2_332, G_333} 35.171 ms
CP, {T.131,T2.231, T 232} 15.918 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm Application

Previous steps

Slack reduction

Critical subpath extraction

Critical subpath extraction

Iteration 2

G2.311

(5.246)

T-121 T2.321

(4.273) (7.372)
CP; Tasks Execution time
CP, G-111,G2.211, T2_221, G222, G2_322, T2_332, G_333} 35.171 ms
CP, T_131, T2 231, T_232} 15.918 ms
CP; G2_311, T2,331} 12.619 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm Application

Previous steps

Slack reduction

Critical subpath extraction

Critical subpath extraction

Iteration 3
CP; Tasks Execution time
CP, G_111, G2_211, T2_221, G_222, G2_322, T2_332, G_333} 35.171 ms
CcP, T_131,T2.231, T,232} 15.918 ms
CP, G2_311, T2,331} 12.619 ms
CP; {T.121,T2.321} 11.646 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Slack Reduction Algorithm

Slack reduction

Slack Reduction

Process critical subpath CP; = {T_131,T2_231, T_232}:

@ Increase ratio for CP;: d(G’i11WT13,2()C73‘1’§G’111“T’131) = ﬂ,;;g =1,33%
@ Slack is reduced by reducing execution frequency of task:
@ T_131: 2.00 GHz = 1.50 GHz;
@ T2.231: 2.00 GHz = 1.50 GHz;
@ T_232: 2.00 GHz = 1.50 GHz;

4.273 ms = 5.598 ms;
7.372 ms = 9.690 ms;
4.273 ms = 5.598 ms;

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Slack Reduction Algorithm

Slack reduction

Slack Reduction

Process critical subpath CP; = {T_131,T2_231, T_232}:

@ Increase ratio for CP;: d(G’i11WT13,2()C73‘1’§G’111“T’131) = ﬂ,;;g =1,33%
@ Slack is reduced by reducing execution frequency of task:
@ T_131: 2.00 GHz = 1.50 GHz;
@ T2.231: 2.00 GHz = 1.50 GHz;
@ T_232: 2.00 GHz = 1.50 GHz;

4.273 ms = 5.598 ms;
7.372 ms = 9.690 ms;
4.273 ms = 5.598 ms;

Total execution time:
35.867 ms > 35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Slack Reduction Algorithm

Slack reduction

Slack Reduction

Process critical subpath CP; = {T_131,T2_231, T_232}:

d(6-111~T.232) —d(GA1T31) _ 21176 _ 1 3307
- b

@ Increase ratio for CP;: T(cPy) = T5010

@ Slack is reduced by reducing execution frequency of task:

@ T_131: 2.00 GHz = 1.50 GHz; 4.273 ms = 5.598 ms;
@ T2.231: 2.00 GHz = 1.50 GHz; 7.372 ms = 9.690 ms;
@ T_232: 2.00 GHz = +56-GHz 2.00 GHz; 4.273 ms = 5-598-ms 4.273 ms;

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP, = {G2_311,T2_331}:

. . d(G111~5T2.331) —d(G111~>G2.311) _ 21,176 __
@ [Increase ratio for CP;: T(cPy) = e = LO6T%

@ Slack is reduced by reducing execution frequency of task:

@ G2.311: 2.00 GHz = 1.20 GHz; 5.246 ms = 8.717 ms;
@ T2_331: 2.00 GHz = 1.20 GHz; 7.372 ms = 12.083 ms;

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP, = {G2_311,T2_331}:

. . d(G111~5T2.331) —d(G111~>G2.311) _ 21,176 __
@ [Increase ratio for CP;: T(cPy) = e = LO6T%

@ Slack is reduced by reducing execution frequency of task:

@ G2.311: 2.00 GHz = 1.20 GHz; 5.246 ms = 8.717 ms;
@ T2_331: 2.00 GHz = 1.20 GHz; 7.372 ms = 12.083 ms;

Total execution time:
35.676 ms > 35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP, = {G2_311,T2_331}:

. . d(G111~5T2.331) —d(G111~>G2.311) _ 21,176 __
@ [Increase ratio for CP;: T(cPy) = e = LO6T%

@ Slack is reduced by reducing execution frequency of task:

@ G2.311: 2.00 GHz = +26-GHz 1.50 GHz; 5.246 ms = &7##ms 7.010 ms;
@ T2_331: 2.00 GHz = 1.20 GHz; 7.372 ms = 12.083 ms;

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP; = {T_121,T2_321}:

. . d(G.111~>T2.321) —d(G111~~T121) _ 15,030 _
@ |Increase ratio for CP;: TPy = Ii’sss = 1,36 %

@ Slack is reduced by reducing execution frequency of task:

@ T_121: 2.00 GHz = 1.50 GHz; 4.273 ms = 5.598 ms;
@ T2.321: 2.00 GHz = 1.50 GHz; 7.372 ms = 9.690 ms;

Total execution time:
35.171 ms

Pedro Alonso et al

DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP; = {T_121,T2_321}:

. . d(G.111~>T2.321) —d(G111~~T121) _ 15,030 _
@ |Increase ratio for CP;: TPy = Ii’sss = 1,36 %

@ Slack is reduced by reducing execution frequency of task:

@ T_121: 2.00 GHz = 1.50 GHz; 4.273 ms = 5.598 ms;
@ T2.321: 2.00 GHz = 1.50 GHz; 7.372 ms = 9.690 ms;

Total execution time:
36.285 ms > 35.171 ms

Pedro Alonso et al

DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP; = {T_121,T2_321}:

d(G-111~T2.321) —d(G-111~>T-121) _ 15,930 __
(CP3) = 11,646 1,36 %

@ |Increase ratio for CP;:

@ Slack is reduced by reducing execution frequency of task:

@ T_121: 2.00 GHz = +56-GHz 2.00 GHz; 4.273 ms = 5:598-ms 4.273 ms;
@ T2.321: 2.00 GHz = +56-GHz 2.00 GHz; 7.372 ms = 9-696-ms 7.372 ms;

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Race-to-Idle Algorithm

Race-to-Idle Algorithm

Race-to-ldle = complete execution as soon as possible by executing tasks of
the algorithm at the highest frequency to “enjoy” longer inactive periods

@ Alternative strategy to reduce power consumption
@ DAG requires no processing, unlike SRA

@ Tasks are executed at highest frequency, during idle periods CPU
frequency is reduced at lowest possible

o Why?
@ Current processors are quite efficient at saving power when idle

@ Power of idle core is much smaller than power in working periods

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Simulator

Experimental results Results

Simulator

We use a simulator to evaluate the performance of the two strategies

Input parameters:
@ DAG capturing tasks and dependencies of a blocked algorithm and recommended
frequencies by the Slack Reduction Algorithm and Race-to-Idle Algorithm
@ A simple description of the target architecture:

@ Number of sockets (physical processors)
@ Number of cores per socket

@ Discrete range of frequencies and its associated voltages
@ Collection of real power for each combination of frequency idle/busy state per core

@ The cost (overhead) required to perform frequency changes

Static priority list scheduler:
@ Duration of tasks at each available frequency is known in advance

@ Tasks that lie on critical path must be prioritized

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Simulator

Benchmark algorithms

Environmen
Experimental results Results

Benchmark algorithms

Blocked algorithms:

@ LU with partial/incremental pivoting
@ Block size: b = 256
@ Matrix size varies from 768 to 5,632

@ Execution time of tasks on AMD Opteron 6128 (8 cores)
@ LU with incremental pivoting: tasks G, T, G2 and T2

@ LU with partial (row) pivoting: Duration of tasks G and M depends on the iteration!

We evaluate the time of 1 flop for each type of task; then, from the theoretical cost
of the task we obtain an approximation of its execution time

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Environment setup
erimental results Results

Environment setup

@ Environment setup
@ AMD Opteron 6128 (1 socket of 8 cores)
@ Discrete range of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz

@ Power required by the tasks: we measure the power running p copies of the DGEMM
kernel at different frequencies:

Frequency-Running/Idle
7 5

Core 1 2 3 6 7 8 Power (W)
2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 157.60
2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 1.50-R 156.86
1.20-R 1.20-R 1.00-R 1.00-R 1.00-R 0.80-R 0.80-1 0.80-1 113.45
1.20-R 1.20-R 1.00-R 1.00-R 1.00-R 0.80-1 0.80-1 0.80-I 110.37
0.80-R 0.80-R 0.80-1 0.80-1 0.80-I 0.80-1 0.80-1 0.80-1 91.81
0.80-R 0.80-I 0.80-1 0.80-1 0.80-I 0.80-I 0.80-1 0.80-I 88.58

We measure with an internal power meter (ASIC with 25 samples/sec)

@ Frequency change latency (in microseconds):
Destination freq.

2.00 150 1.20 1.00 0.80
g 2.00 - 40.36 43.18 43.77 49.85
&= 1.50 302.5 - 50.98 54.00 58.19
3 1.20 301.7 302.7 - 61.60 66.05
% 1.00 297.4 302.3 306.0 - 74.70
%] -

0.80 291.6 292.7 294.0 295.80

o Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Bel ithms
Environment setup
Experimental results Results

Metrics

Evaluation = In order to evaluate experimental results obtained with the
simulator, we compare execution time and consumption with no policy and
with SRA/RIA

Metrics:

Execution time

@ Tsra/RiA Policy @ Csra/ria policy = 2oj—1 Wi, = Th
@ Tho policy @ Cio policy = Wipax T (fmax)
@ Impact of SRA/RIA on time @ Impact of SRA/RIA on consumption

TSRA Policy 100 CSRA/RIA Policy 100
No policy

% Tsra/RiA = % Csra/RiA =

Tho policy

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Experimental results Results

LU factorization with partial pivoting

Impact of the SRA/RIA on energy and time for the LU factorization with
partial pivoting:

LU factorization with partial pivoting (b = 256)

S T Impact on consumption of RIA e
= 140 Impact on consumption of SRA == | 140 -
5 IImpact on time otf&l'FIRIQ — IS
Bt mpact on time of S] ~
2 120 P 120 5
£
Z 100 | - - - 4 100 2
<
5 80| | + 80 32
£ 60 : - 60 =
> %]
@ 40 b] - 40 2
5 20|] 420 g
& =
= 0 0
® ¥ O v N v ¥ Q © N ®© © N ® ¥ 9 ©
© A B W F QB o~ kA S 1 S v & I @
~ SO N 1Bk o ® 1 oo o 0 S % & % = m D
I T T - TS S FF ¥ ¥ b B o>
Matrix si:

@ SRA: Time is compromised and increases the consumption for largest problem sizes

@ The increase in execution time is due to the SRA being oblivious to the real resources

@ RIA: Time is not compromised and consumption is maintained for largest problem sizes

o Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Simulator

Benchmark algorithms

Envir p
Experimental results Results

LU factorization with incremental pivoting

Impact of the SRA/RIA on energy and time for the LU factorization with
incremental pivoting:

LU factorization with incremental pivoting (b = 256)

o T T T T T T T
X Impact on conSumption of RIA" mmmm
= 140 Tifipact on consumption of SRA == | 140 _
g Impact on time off Rlﬁ — IS
i 120 Impact on time of SRA mmm 120 :
£
£ 100 100 &
8 5
= <
3 80 80 =
: 3
=
& 60 60
= n
e 5
& 40 40 2
3 g
S

a
g 20 20 §
g =
g
= 0 0

768 £
1024
1280
1536
792
2048 £
2304
2816

©

el

= 5
Matrix size (n)

@ SRA: Yelds higher execution time that produces an increase in power consumption

@ RIA: Maintains execution time but reduces energy needs

o Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Conclusions

Conclusions

Idea: Use of DVFS to save energy during the execution of dense linear algebra
algorithms on multi-core architectures

Objective: To evaluate two alternative strategies to save energy consumption

Slack Reduction Algorithm

Race-to-Idle Algorithm

@ DAG requires a processing @ DAG requires no processing

@ Currently does not take into account @ Algorithm is applied on the fly
number of resources

@ Increases execution time when matrix @ Maintains in all of cases execution time
SIZEJCIESES @ Reduce energy consumption (around

@ Increases, also, energy consumption 5%)

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Conclusions

Conclusions and future work

Results of dense linear algorithms: LU with partial/incremental pivoting
@ Simulation under realistic conditions show that RIA produces more energy savings than SRA

@ Current processors are quite good saving power when idle, so It's generally better to run as
fast as possible to produce longer idle periods

@ In our target platform (AMD Opteron 6128) RIA strategy is capable to produce more energy
savings than SRA

@ Power:
Working at highest frequency > Working at lowest frequency > Idle at lowest frequency
Energy savings
@ Reduce environmental impact

@ Reduce electrical costs

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

Thanks for your attention!

Questions?

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors

	Introduction
	Dense linear algebra operations
	Slack Reduction Algorithm
	Introduction
	Application
	Previous steps
	Slack reduction

	Race-to-Idle Algorithm
	Experimental results
	Simulator
	Benchmark algorithms
	Environment setup
	Results

	Conclusions
	

