
International Conference on
Energy-Aware High Performance Computing

DVFS-Control Techniques for Dense Linear Algebra
Operations on Multi-Core Processors

Pedro Alonso1, Manuel F. Dolz2, Francisco D. Igual2,

Rafael Mayo2, Enrique S. Quintana-Ort́ı2

1 2

September 07–09, 2011, Hamburg (Germany)



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Motivation

High performance computing:

Optimization of algorithms applied to solve complex problems

Technological advance ⇒ improve performance:

Processors works at higher frequencies
Higher number of cores per socket (processor)

Large number of processors and cores ⇒ High energy consumption

Methods, algorithms and techniques to reduce energy consumption
applied to high performance computing.

Reduce the frequency of processors with DVFS techniques

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Outline

1 Introduction

2 Dense linear algebra operations

3 Slack Reduction Algorithm
Introduction
Application
Previous steps
Slack reduction

4 Race-to-Idle Algorithm

5 Experimental results
Simulator
Benchmark algorithms
Environment setup
Results

6 Conclusions

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction

Scheduling tasks of dense linear algebra algorithms

Examples: Cholesky, QR and LU factorizations

Energy saving tools available for multi-core processors

Example: Dynamic Voltage and Frequency Scaling (DVFS)

Scheduling tasks + DVFS

⇓
Power-aware scheduling on multi-core processors

Our strategies:

Reduce the frequency of cores that will execute non-critical tasks to decrease idle
times without sacrifying total performance of the algorithm

Execute all tasks at highest frequency to “enjoy” longer inactive periods

⇓
Energy savings

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction

Scheduling tasks of dense linear algebra algorithms

Examples: Cholesky, QR and LU factorizations

Energy saving tools available for multi-core processors

Example: Dynamic Voltage and Frequency Scaling (DVFS)

Scheduling tasks + DVFS

⇓
Power-aware scheduling on multi-core processors

Our strategies:

Reduce the frequency of cores that will execute non-critical tasks to decrease idle
times without sacrifying total performance of the algorithm

Execute all tasks at highest frequency to “enjoy” longer inactive periods

⇓
Energy savings

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Dense linear algebra operations

LU factorization:

Factor
A = LU,

L/U ∈ Rn×n unit lower/upper triangular matrices

Two algorithms for LU factorization:

LU with partial (row) pivoting (traditional version)
LU with incremental pivoting

‘‘Rapid development of high-performance out-of-core solvers for
electromagnetics”
T. Joffrain, E.S. Quintana, R. van de Geijn
State-if-the-Art in Scientific Computing - PARA 2004
Copenhaguen (Denmark), June 2004

Later called “Tile LU factorization” or “Communication-Avoiding LU
factorization with flat tree”.

We consider a partitioning of matrix A into blocks of size b × b

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Dense linear algebra operations

LU factorization with partial (row) pivoting

for k = 1 : s do

Ak:s,k = Lk:s,k ·Ukk LU factorization (s − k + 2
3 )b

3 flops

for j = k + 1 : s do

Akj ← L−1
kk · Akj Triangular solve b3 flops

Ak+1:s,j ← Ak+1:s,j − Ak+1:s,k · Akj Matrix-matrix product 2(s − k)b3 flops

end for
end for

DAG with a matrix consisting of 3× 3 blocks

M 21

M 31

G 11

G 22

T 32 M 32

T 21

T 31

G 33

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Dense linear algebra operations

LU factorization with partial (row) pivoting

for k = 1 : s do

Ak:s,k = Lk:s,k ·Ukk LU factorization (s − k + 2
3 )b

3 flops

for j = k + 1 : s do

Akj ← L−1
kk · Akj Triangular solve b3 flops

Ak+1:s,j ← Ak+1:s,j − Ak+1:s,k · Akj Matrix-matrix product 2(s − k)b3 flops

end for
end for

DAG with a matrix consisting of 3× 3 blocks

M 21

M 31

G 11

G 22

T 32 M 32

T 21

T 31

G 33

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Dense linear algebra operations

LU factorization with incremental pivoting

for k = 1 : s do

Akk = Lkk · Ukk LU factorization 2b3

3 flops

for j = k + 1 : s do

Akj ← L−1
kk · Akj Triangular solve b3 flops

end for
for i = k + 1 : s do(

Akk

Aik

)
=

(
Lkk

Lik

)
· Uik 2× 1 LU factorization b3 flops

for j = k + 1 : s do(
Akj

Aij

)
←
(

Lkk 0
Lik I

)−1

·
(

Akj

Aij

)
2× 1 Triangular solve b3

2 flops

end for
end for

end for

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Dense linear algebra operations

LU factorization with incremental pivoting

DAG with a matrix consisting of 3× 3 blocks

T 232
(4.273)

T2 221
(7.372)

T2 231
(7.372)

G2 211
(5.246)

G 222
(3.311)

T 121
(4.273)

T 131
(4.273)

G2 322
(5.246)

G2 311
(5.246)

T2 332
(7.372)

G 111
(3.311)

G 333
(3.311)

T2 321
(7.372)

T2 331
(7.372)

Nodes contain execution time of tasks (in milliseconds, ms), for a block
size b = 256 on a single-core of and AMD Opteron 6128 running at 2.00
GHz.

We will use this info to illustrate our power-saving approach of the SRA!

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction Algorithm: Introduction

Idea

Obtain the dependency graph corresponding to the computation of a dense
linear algebra algorithm, apply the Critical Path Method to analize slacks and
reducing them with our Slack Reduction Algorithm

The Critical Path Method:

DAG of dependencies

Nodes ⇒ Tasks
Edges ⇒ Dependencies

Times: Early and latest times to start and finalize execution of task Ti with cost Ci

Total slack: Amount of time that a task can be delayed without increasing the total
execution time of the algorithm

Critical path: Formed by a succession of tasks, from initial to final node of the graph, with
total slack = 0.

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction Algorithm: Introduction

Idea

Obtain the dependency graph corresponding to the computation of a dense
linear algebra algorithm, apply the Critical Path Method to analize slacks and
reducing them with our Slack Reduction Algorithm

The Critical Path Method:

DAG of dependencies

Nodes ⇒ Tasks
Edges ⇒ Dependencies

Times: Early and latest times to start and finalize execution of task Ti with cost Ci

Total slack: Amount of time that a task can be delayed without increasing the total
execution time of the algorithm

Critical path: Formed by a succession of tasks, from initial to final node of the graph, with
total slack = 0.

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Application to dense linear algebra algorithms

Application of CPM to the DAG of the LU factorization with incremental
pivoting of a matrix consisting of 3× 3 blocks:

Task C ES LF S

G 111 3.311 0.000 3.311 0

T 121 4.273 3.311 8.558 0.973

G2 211 5.246 3.311 8.558 0

G2 311 5.246 3.311 11.869 3.311

T 131 4.273 3.311 12.842 5.257

T2 321 7.372 8.558 19.241 3.311

G2 322 5.246 19.241 24.488 0

T2 332 7.373 24.488 31.861 0

G 333 3.311 31.861 35.171 0

T2 331 7.372 8.558 24.488 8.558

T2 221 7.372 8.558 15.930 0

G 222 3.311 15.930 19.241 0

T 232 4.273 19.241 24.488 0.973

T2 231 7.372 8.558 20.214 4.284

Objective: tune the slack of those tasks with S > 0, reducing its execution
frequency and yielding low power usage → Slack Reduction Algorithm

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction Algorithm

Slack Reduction Algorithm

1 Frequency assignment

2 Critical subpath extraction

3 Slack reduction

1 Frequency assignment

Example: LU factorization
with incremental pivoting
of 3×3 blocks: T 232

(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =2.00

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =2.00

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Discrete collection of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz
We have obtained execution time of tasks running at each available frequency

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction Algorithm

Slack Reduction Algorithm

1 Frequency assignment

2 Critical subpath extraction

3 Slack reduction

1 Frequency assignment

Example: LU factorization
with incremental pivoting
of 3×3 blocks: T 232

(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =2.00

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =2.00

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Discrete collection of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz
We have obtained execution time of tasks running at each available frequency

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Critical subpath extraction

2 Critical subpath extraction

Iteration 0

T 232
(4.273)

T2 221
(7.372)

T2 231
(7.372)

G2 211
(5.246)

G 222
(3.311)

T 121
(4.273)

T 131
(4.273)

G2 322
(5.246)

G2 311
(5.246)

T2 332
(7.372)

G 111
(3.311)

G 333
(3.311)

T2 321
(7.372)

T2 331
(7.372)

CPi Tasks Execution time

CP0 {G 111, G2 211, T2 221, G 222, G2 322, T2 332, G 333} 35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Critical subpath extraction

2 Critical subpath extraction

Iteration 1

T 232
(4.273)

T2 231
(7.372)

T 121
(4.273)

T 131
(4.273)

G2 311
(5.246)

T2 321
(7.372)

T2 331
(7.372)

CPi Tasks Execution time

CP0 {G 111, G2 211, T2 221, G 222, G2 322, T2 332, G 333} 35.171 ms
CP1 {T 131, T2 231, T 232} 15.918 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Critical subpath extraction

2 Critical subpath extraction

Iteration 2

T 121
(4.273)

G2 311
(5.246)

T2 321
(7.372)

T2 331
(7.372)

CPi Tasks Execution time

CP0 {G 111, G2 211, T2 221, G 222, G2 322, T2 332, G 333} 35.171 ms
CP1 {T 131, T2 231, T 232} 15.918 ms
CP2 {G2 311, T2 331} 12.619 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Critical subpath extraction

2 Critical subpath extraction

Iteration 3

T 121
(4.273)

T2 321
(7.372)

CPi Tasks Execution time

CP0 {G 111, G2 211, T2 221, G 222, G2 322, T2 332, G 333} 35.171 ms
CP1 {T 131, T2 231, T 232} 15.918 ms
CP2 {G2 311, T2 331} 12.619 ms
CP3 {T 121, T2 321} 11.646 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction

Iteration 1

Process critical subpath CP1 = {T 131, T2 231, T 232}:
1 Increase ratio for CP1: d(G 111 T 232)−d(G 111 T 131)

l(CP1)
= 21,176

15,919 = 1,33 %

2 Slack is reduced by reducing execution frequency of task:

T 131: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;
T2 231: 2.00 GHz ⇒ 1.50 GHz; 7.372 ms ⇒ 9.690 ms;
T 232: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =2.00

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =2.00

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction

Iteration 1

Process critical subpath CP1 = {T 131, T2 231, T 232}:
1 Increase ratio for CP1: d(G 111 T 232)−d(G 111 T 131)

l(CP1)
= 21,176

15,919 = 1,33 %

2 Slack is reduced by reducing execution frequency of task:

T 131: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;
T2 231: 2.00 GHz ⇒ 1.50 GHz; 7.372 ms ⇒ 9.690 ms;
T 232: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;

T 232
(5.598)

f =1.50

T2 221
(7.372)

f =2.00

T2 231
(9.690)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(5.598)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Total execution time:
35.867 ms > 35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction

Iteration 1

Process critical subpath CP1 = {T 131, T2 231, T 232}:
1 Increase ratio for CP1: d(G 111 T 232)−d(G 111 T 131)

l(CP1)
= 21,176

15,919 = 1,33 %

2 Slack is reduced by reducing execution frequency of task:

T 131: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;
T2 231: 2.00 GHz ⇒ 1.50 GHz; 7.372 ms ⇒ 9.690 ms;
T 232: 2.00 GHz ⇒ 1.50 GHz 2.00 GHz; 4.273 ms ⇒ 5.598 ms 4.273 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(9.690)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(5.598)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction

Iteration 2

Process critical subpath CP2 = {G2 311, T2 331}:
1 Increase ratio for CP2: d(G 111 T2 331)−d(G 111 G2 311)

l(CP2)
= 21,176

12,619 = 1,67 %

2 Slack is reduced by reducing execution frequency of task:

G2 311: 2.00 GHz ⇒ 1.20 GHz; 5.246 ms ⇒ 8.717 ms;
T2 331: 2.00 GHz ⇒ 1.20 GHz; 7.372 ms ⇒ 12.083 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(5.246)

f =2.00

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(7.372)

f =2.00

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction

Iteration 2

Process critical subpath CP2 = {G2 311, T2 331}:
1 Increase ratio for CP2: d(G 111 T2 331)−d(G 111 G2 311)

l(CP2)
= 21,176

12,619 = 1,67 %

2 Slack is reduced by reducing execution frequency of task:

G2 311: 2.00 GHz ⇒ 1.20 GHz; 5.246 ms ⇒ 8.717 ms;
T2 331: 2.00 GHz ⇒ 1.20 GHz; 7.372 ms ⇒ 12.083 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(8.717)

f =1.20

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(12.083)

f =1.20

Total execution time:
35.676 ms > 35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction

Iteration 2

Process critical subpath CP2 = {G2 311, T2 331}:
1 Increase ratio for CP2: d(G 111 T2 331)−d(G 111 G2 311)

l(CP2)
= 21,176

12,619 = 1,67 %

2 Slack is reduced by reducing execution frequency of task:

G2 311: 2.00 GHz ⇒ 1.20 GHz 1.50 GHz; 5.246 ms ⇒ 8.717 ms 7.010 ms;
T2 331: 2.00 GHz ⇒ 1.20 GHz; 7.372 ms ⇒ 12.083 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(7.010)

f =1.50

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(12.083)

f =1.20

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction

Iteration 2

Process critical subpath CP3 = {T 121, T2 321}:
1 Increase ratio for CP3: d(G 111 T2 321)−d(G 111 T 121)

l(CP3)
= 15,930

11,646 = 1,36 %

2 Slack is reduced by reducing execution frequency of task:

T 121: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;
T2 321: 2.00 GHz ⇒ 1.50 GHz; 7.372 ms ⇒ 9.690 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(7.010)

f =1.50

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(12.083)

f =1.20

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction

Iteration 2

Process critical subpath CP3 = {T 121, T2 321}:
1 Increase ratio for CP3: d(G 111 T2 321)−d(G 111 T 121)

l(CP3)
= 15,930

11,646 = 1,36 %

2 Slack is reduced by reducing execution frequency of task:

T 121: 2.00 GHz ⇒ 1.50 GHz; 4.273 ms ⇒ 5.598 ms;
T2 321: 2.00 GHz ⇒ 1.50 GHz; 7.372 ms ⇒ 9.690 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(5.598)

f =1.50

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(7.010)

f =1.50

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(9.690)

f =1.50

T2 331
(12.083)

f =1.20

Total execution time:
36.285 ms > 35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Introduction
Application
Previous steps
Slack reduction

Slack Reduction

Iteration 2

Process critical subpath CP3 = {T 121, T2 321}:
1 Increase ratio for CP3: d(G 111 T2 321)−d(G 111 T 121)

l(CP3)
= 15,930

11,646 = 1,36 %

2 Slack is reduced by reducing execution frequency of task:

T 121: 2.00 GHz ⇒ 1.50 GHz 2.00 GHz; 4.273 ms ⇒ 5.598 ms 4.273 ms;
T2 321: 2.00 GHz ⇒ 1.50 GHz 2.00 GHz; 7.372 ms ⇒ 9.690 ms 7.372 ms;

T 232
(4.273)

f =2.00

T2 221
(7.372)

f =2.00

T2 231
(7.372)

f =1.50

G2 211
(5.246)

f =2.00

G 222
(3.311)

f =2.00

T 121
(4.273)

f =2.00

T 131
(4.273)

f =1.50

G2 322
(5.246)

f =2.00

G2 311
(7.010)

f =1.50

T2 332
(7.372)

f =2.00
G 111
(3.311)

f =2.00

G 333
(3.311)

f =2.00

T2 321
(7.372)

f =2.00

T2 331
(12.083)

f =1.20

Total execution time:
35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Race-to-Idle Algorithm

Race-to-Idle ⇒ complete execution as soon as possible by executing tasks of
the algorithm at the highest frequency to “enjoy” longer inactive periods

Alternative strategy to reduce power consumption

DAG requires no processing, unlike SRA

Tasks are executed at highest frequency, during idle periods CPU
frequency is reduced at lowest possible

Why?

Current processors are quite efficient at saving power when idle

Power of idle core is much smaller than power in working periods

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Simulator
Benchmark algorithms
Environment setup
Results

Simulator

We use a simulator to evaluate the performance of the two strategies

Input parameters:

DAG capturing tasks and dependencies of a blocked algorithm and recommended
frequencies by the Slack Reduction Algorithm and Race-to-Idle Algorithm

A simple description of the target architecture:

Number of sockets (physical processors)
Number of cores per socket

Discrete range of frequencies and its associated voltages

Collection of real power for each combination of frequency idle/busy state per core

The cost (overhead) required to perform frequency changes

Static priority list scheduler:

Duration of tasks at each available frequency is known in advance

Tasks that lie on critical path must be prioritized

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Simulator
Benchmark algorithms
Environment setup
Results

Benchmark algorithms

Blocked algorithms:

LU with partial/incremental pivoting

Block size: b = 256

Matrix size varies from 768 to 5,632

Execution time of tasks on AMD Opteron 6128 (8 cores)

LU with incremental pivoting: tasks G, T, G2 and T2

LU with partial (row) pivoting: Duration of tasks G and M depends on the iteration!

We evaluate the time of 1 flop for each type of task; then, from the theoretical cost
of the task we obtain an approximation of its execution time

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Simulator
Benchmark algorithms
Environment setup
Results

Environment setup

Environment setup
AMD Opteron 6128 (1 socket of 8 cores)

Discrete range of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz

Power required by the tasks: we measure the power running p copies of the dgemm
kernel at different frequencies:

Frequency-Running/Idle
Core 1 2 3 4 5 6 7 8 Power (W)

2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 157.60
2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 1.50-R 156.86

. . . . . .
1.20-R 1.20-R 1.00-R 1.00-R 1.00-R 0.80-R 0.80-I 0.80-I 113.45
1.20-R 1.20-R 1.00-R 1.00-R 1.00-R 0.80-I 0.80-I 0.80-I 110.37

. . . . . .
0.80-R 0.80-R 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 91.81
0.80-R 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 0.80-I 88.58

We measure with an internal power meter (ASIC with 25 samples/sec)

Frequency change latency (in microseconds):
Destination freq.

2.00 1.50 1.20 1.00 0.80

S
o

u
rc

e
fr

eq
. 2.00 – 40.36 43.18 43.77 49.85

1.50 302.5 – 50.98 54.00 58.19
1.20 301.7 302.7 – 61.60 66.05
1.00 297.4 302.3 306.0 – 74.70
0.80 291.6 292.7 294.0 295.80 –

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Simulator
Benchmark algorithms
Environment setup
Results

Metrics

Evaluation ⇒ In order to evaluate experimental results obtained with the
simulator, we compare execution time and consumption with no policy and
with SRA/RIA

Metrics:

Execution time

TSRA/RIA Policy

TNo policy

Impact of SRA/RIA on time

%TSRA/RIA =
TSRA Policy
TNo policy

· 100

Consumption

CSRA/RIA Policy =
∑n

i=1 Wfn · Tn

CNo policy = Wfmax T(fmax )

Impact of SRA/RIA on consumption

%CSRA/RIA =
CSRA/RIA Policy

CNo policy
· 100

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Simulator
Benchmark algorithms
Environment setup
Results

LU factorization with partial pivoting

Impact of the SRA/RIA on energy and time for the LU factorization with
partial pivoting:

DVFS-Control Techniques for Dense Linear Algebra Operations on Multi-Core Processors 7

0

20

40

60

80

100

120

140

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
7
9
2

2
0
4
8

2
3
0
4

2
5
6
0

2
8
1
6

3
0
7
2

3
3
2
8

3
5
8
4

3
8
4
0

4
0
9
6

4
3
5
2

4
6
0
8

4
8
6
4

5
1
2
0

5
3
7
6

5
6
3
2

0

20

40

60

80

100

120

140

Im
p
a
c
t

o
f
S
R

A
/
R

IA
o
n

c
o
n
su

m
p
ti

o
n

(%
)

Im
p
a
c
t

o
f
S
R

A
/
R

IA
o
n

ti
m

e
(%

)

Matrix size (n)

LU factorization with partial pivoting (b = 256)

Impact on consumption of RIA
Impact on consumption of SRA

Impact on time of RIA
Impact on time of SRA

Fig. 5 Impact of the SRA and the RIA on the energy and execution time of the blocked algorithm for the LU factorization
with partial pivoting.

6.4 The LU factorization with partial pivoting

Figure 5 reports the results for the LU factorization

with partial pivoting. The first thing to notice is the
increase of execution time that the usage of the SRA

produces for the largest problem sizes. The RIA, on

the other hand, maintains the execution time for all

problem dimensions, demonstrating that the overhead
of frequency changes is negligible compared with the

cost (i.e., time) of the individual tasks (at least, for such

block size). If we focus on the energy, the higher execu-
tion times required by SRA increases the consumption

as well, and this is not compensated by the reduction

that, in principle, an execution at a slower pace (fre-
quency) brings. A deeper investigation revealed that

the increase in execution time of SRA that appears for

n ≥ 2, 560 is actually due to the algorithm being oblivi-

ous to the real number of available resources (cores). A
resource-aware implementation of SRA would solve this

issue and is among future work. With this, we expect

that the SRA maintains the TSRA ratio close to 1, but
still render power consumption worse than that of the

RIA.

6.5 The LU factorization with incremental pivoting

Due to the cost of the simulation and the higher com-

plexity of the DAG associated with this algorithm, in

this case we could only evaluate the impact of SRA for

problems of dimension n up to 2,816. Figure 6 reports

the results for the LU factorization with incremental
pivoting. In general, the behaviour is similar to that of

the previous algorithm: in some cases the SRA yields

a higher execution time that produces an increase in
power consumption while the RIA maintains execution

time but reduces energy needs.

7 Conclusions and Future Work

In this paper, we have evaluated two alternative strate-

gies that leverage DVFS to save energy during the exe-
cution of dense linear algebra algorithms on multi-core

architectures. The SRA aims at reducing idle periods,

identifying the slacks in the DAG representing the tasks

and dependencies of the algorithm, and slowing down
the execution of the appropriate tasks, while poten-

tially maintaining the global execution time. The RIA

pursues the power-conservation goal but from a totally
opposite approach; specifically, this strategy generates

inactive times during the execution of the DAG by ex-

ecuting all tasks at the highest frequency, and relies on
the power savings attained via a reduction of frequency

operation during these idle periods. In the end, both

alternatives investigate on the trade-off between power

and performance.
We have evaluated these two power-control poli-

cies using two algorithms of the LU factorization which

differ in the pivoting strategy, and are representative

SRA: Time is compromised and increases the consumption for largest problem sizes

The increase in execution time is due to the SRA being oblivious to the real resources

RIA: Time is not compromised and consumption is maintained for largest problem sizes

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Simulator
Benchmark algorithms
Environment setup
Results

LU factorization with incremental pivoting

Impact of the SRA/RIA on energy and time for the LU factorization with
incremental pivoting:

8 Pedro Alonso et al.

0

20

40

60

80

100

120

140

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
7
9
2

2
0
4
8

2
3
0
4

2
5
6
0

2
8
1
6

0

20

40

60

80

100

120

140

Im
p
a
c
t

o
f
S
R

A
/
R

IA
o
n

c
o
n
su

m
p
ti

o
n

(%
)

Im
p
a
c
t

o
f
S
R

A
/
R

IA
o
n

ti
m

e
(%

)

Matrix size (n)

LU factorization with incremental pivoting (b = 256)

Impact on consumption of RIA
Impact on consumption of SRA

Impact on time of RIA
Impact on time of SRA

Fig. 6 Impact of the SRA and the RIA on the energy and execution time of the blocked algorithm for the LU factorization
with incremental pivoting.

of many other high-performance Level 3 BLAS-based

dense linear algebra operations. The results of this anal-
ysis using a simulator that reflects realistic conditions

show the superior performance of the RIA policy over

the SRA one, both from the point of view of execution
time and energy savings.

Acknowledgements The authors from Univ. Jaume I were
supported by project CICYT TIN2008-06570-C04 and FEDER.

References

1. S. Albers. Energy-efficient algorithms. Commun. ACM,
53:86–96, May 2010.

2. J. Dongarra et al. The international ExaScale software
project roadmap. Int. J. of High Performance Comput-
ing & Applications, 25(1), 2011.

3. M. Duranton et al. The HiPEAC vision, 2010. Available
from http://www.hipeac.net/roadmap.

4. W. Feng, X. Feng, and R. Ce. Green supercomputing
comes of age. IT Professional, 10(1):17 –23, jan.-feb.
2008.

5. R. Gruber and V. Keller. One Joule per GFlop for BLAS2
Now! In Simos Theodore E., Psihoyios George, and Tsi-
touras Ch, editors, AIP Conf. Proceedings, volume 1281,
pages 1321–1324. American Institute of Physics, 2010.

6. T. Ludwig. Editorial for the First International Con-
ference on Energy-Aware High Performance Comput-
ing. Computer Science - Research and Development,
25(3):123–124, 2010.

7. G. H. Golub and C. F. Van Loan. Matrix Computations.
The Johns Hopkins University Press, Baltimore, 3rd edi-
tion, 1996.

8. F. G. Van Zee. libflame: The Complete Reference.
www.lulu.com, 2009.

9. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Dem-
mel, Jack J. Dongarra, J. Du Croz, S. Hammarling,
A. Greenbaum, A. McKenney, and D. Sorensen. LA-
PACK Users’ guide. SIAM, 3rd edition, 1999.

10. C. Hsu and W. Feng. A feasibility analysis of power
awareness in commodity-based high-performance clus-
ters. Cluster 2005, 2005.

11. E. S. Quintana-Ort́ı and R. A. van de Geijn. Updating
an LU factorization with pivoting. ACM Transactions
on Mathematical Software, 35(2):11:1–11:16, July 2008.

12. G. Quintana-Ort́ı, E. S. Quintana-Ort́ı, R. A. van de
Geijn, F. G. Van Zee, and E. Chan. Program-
ming matrix algorithms-by-blocks for thread-level par-
allelism. ACM Transactions on Mathematical Software,
36(3):14:1–14:26, 2009.

13. V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah,
R. Springer, B. L. Rountree, and M. E. Femal. Analyz-
ing the energy-time trade-off in high-performance com-
puting applications. IEEE Trans. Parallel Distrib. Syst.,
18:835–848, June 2007.

14. D. King, I. Ahmad, and H.F. Sheikh. Stretch and com-
press based re-scheduling techniques for minimizing the
execution times of DAGs on multi-core processors un-
der energy constraints. In International Conference on
Green Computing, pages 49–60. IEEE, 2010.

15. K. Palli. Scheduling dags for minimum finish time and
power consumption on heterogeneous processors. Mas-
ter’s thesis, Albers University, Albers, AL, 2005.

16. L.R. Shaffer, J.B. Ritter, and W.L. Meyer. The critical-
path method. McGraw-Hill, 1965.

17. P. Alonso, M.F. Dolz, R. Mayo, and E.S. Quintana-Ort́ı.
Improving power efficiency of dense linear algebra algo-
rithms on multi-core processors via slack control. Pro-
ceedings of the 2010 International Conference on High
Performance Computing & Simulation, 2011. To appear.

SRA: Yelds higher execution time that produces an increase in power consumption

RIA: Maintains execution time but reduces energy needs

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Conclusions

Idea: Use of DVFS to save energy during the execution of dense linear algebra
algorithms on multi-core architectures

Objective: To evaluate two alternative strategies to save energy consumption

Slack Reduction Algorithm

DAG requires a processing

Currently does not take into account
number of resources

Increases execution time when matrix
size increases

Increases, also, energy consumption

Race-to-Idle Algorithm

DAG requires no processing

Algorithm is applied on the fly

Maintains in all of cases execution time

Reduce energy consumption (around
5 %)

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Conclusions and future work

Results of dense linear algorithms: LU with partial/incremental pivoting

Simulation under realistic conditions show that RIA produces more energy savings than SRA

Current processors are quite good saving power when idle, so It’s generally better to run as
fast as possible to produce longer idle periods

In our target platform (AMD Opteron 6128) RIA strategy is capable to produce more energy
savings than SRA

Power:

Working at highest frequency > Working at lowest frequency ≫ Idle at lowest frequency

Energy savings

Reduce environmental impact

Reduce electrical costs

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Dense linear algebra operations

Slack Reduction Algorithm
Race-to-Idle Algorithm

Experimental results
Conclusions

Thanks for your attention!

Questions?

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors


	Introduction
	Dense linear algebra operations
	Slack Reduction Algorithm
	Introduction
	Application
	Previous steps
	Slack reduction

	Race-to-Idle Algorithm
	Experimental results
	Simulator
	Benchmark algorithms
	Environment setup
	Results

	Conclusions
	

