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Motivation

@ High performance computing:

@ Optimization of algorithms applied to solve complex problems

@ Technological advance = improve performance:

@ Processors works at higher frequencies
@ Higher number of cores per socket (processor)

@ Large number of processors and cores = High energy consumption

@ Methods, algorithms and techniques to reduce energy consumption
applied to high performance computing.

@ Reduce the frequency of processors with DVFS techniques
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Introduction

Introduction

@ Scheduling tasks of dense linear algebra algorithms
@ Examples: Cholesky, QR and LU factorizations

@ Energy saving tools available for multi-core processors
@ Example: Dynamic Voltage and Frequency Scaling (DVFS)
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Introduction

Introduction

@ Scheduling tasks of dense linear algebra algorithms
@ Examples: Cholesky, QR and LU factorizations

@ Energy saving tools available for multi-core processors

@ Example: Dynamic Voltage and Frequency Scaling (DVFS)

Scheduling tasks + DVFS

Power-aware scheduling on multi-core processors

@ Our strategies:

@ Reduce the frequency of cores that will execute non-critical tasks to decrease idle
times without sacrifying total performance of the algorithm

@ Execute all tasks at highest frequency to “enjoy” longer inactive periods

4

Energy savings
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Dense linear algebra operations

Dense linear algebra operations

LU factorization:

@ Factor
A= LU,

L/U € R™" unit lower/upper triangular matrices

@ Two algorithms for LU factorization:

o LU with partial (row) pivoting (traditional version)
e LU with incremental pivoting

@ “Rapid development of high-performance out-of-core solvers for
electromagnetics”
T. Joffrain, E.S. Quintana, R. van de Geijn
State-if-the-Art in Scientific Computing - PARA 2004
Copenhaguen (Denmark), June 2004
Later called “Tile LU factorization” or “Communication-Avoiding LU
factorization with flat tree”.

@ We consider a partitioning of matrix A into blocks of size b x b
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Dense linear algebra operations

Dense linear algebra operations

LU factorization with partial (row) pivoting

for k =1:sdo

Akis,k = Licis k- Ui _ (s —k+ %)b3 flops

forj=k+1:sdo

Ay — Lt Ay b* flops

Akt1:s,j < Akt1is,j — Aktlis,k - Ay MATRIX-MATRIX PRODUCT 2(s — k)b3 flops

end for
end for
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Dense linear algebra operations

Dense linear algebra operations

LU factorization with partial (row) pivoting

for k =1:sdo
Akis,k = Licis k- Ui _ (s —k+ %)b3 flops
forj=k+1:sdo
 TRIANGULAR SOLVE b* flops

Akj «— L,;(l 'Akj

Akt1:s,j < Akt1is,j — Aktlis,k - Ay MATRIX-MATRIX PRODUCT 2(s — k)b3 flops

end for
end for

DAG with a matrix consisting of 3 x 3 blocks

2
E=

K
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Dense linear algebra operations

Dense linear algebra operations

LU factorization with incremental pivoting

fork=1:sdo
Axk = Lik - Uk
forj=k+1:sdo

Ay Lt Ay

end for
fori=k+1:sdo

A ) — (L) Uik 2 x 1 LU FACTORIZATION
Aik Lix

forj=k+1:sdo
Ajj L 1 Ajj
end for

end for
end for
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Dense linear algebra operations

Dense linear algebra operations

LU factorization with incremental pivoting

DAG with a matrix consisting of 3 x 3 blocks

@ Nodes contain execution time of tasks (in milliseconds, ms), for a block
size b = 256 on a single-core of and AMD Opteron 6128 running at 2.00

GHz.
@ We will use this info to illustrate our power-saving approach of the SRA!

DVFS for Dense Linear Algebra Operations on Multi-Core Processors
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Introduction
Slack Reduction Algorithm Applicat

Sl duction

Slack Reduction Algorithm: Introduction

Obtain the dependency graph corresponding to the computation of a dense
linear algebra algorithm, apply the Critical Path Method to analize slacks and
reducing them with our Slack Reduction Algorithm
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Introduction
Slack Reduction Algorithm Al

Slack Reduction Algorithm: Introduction

Obtain the dependency graph corresponding to the computation of a dense
linear algebra algorithm, apply the Critical Path Method to analize slacks and
reducing them with our Slack Reduction Algorithm

The Critical Path Method:

@ DAG of dependencies

@ Nodes = Tasks
@ Edges = Dependencies

@ Times: Early and latest times to start and finalize execution of task T; with cost C;

@ Total slack: Amount of time that a task can be delayed without increasing the total
execution time of the algorithm

@ Critical path: Formed by a succession of tasks, from initial to final node of the graph, with
total slack = 0.
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Introduction
Slack Reduction Algorithm Application

Application of CPM to the DAG of the LU factorization with incremental
pivoting of a matrix consisting of 3 x 3 blocks:

[Tk [ _C [ BB [ F [ 5 |
Giii | 3311 | 0.000 3311 0
Ti21 | 4273 | 3311 8558 | 0973
G2.211 | 5246 | 3311 8.558 0

G2.311 5.246 3.311 11.869 3.311
T-131 4.273 3311 12.842 5.257
T2.321 7.372 8.558 19.241 3311

G2.322 5.246 19.241 24.488 0
T2.332 7.373 24.488 31.861 0
G_333 3.311 31.861 35.171 0
T2.331 7.372 8.558 24.488 8.558
T2.221 7.372 8.558 15.930 0
G222 3.311 15.930 19.241 0

T-232 4.273 19.241 24.488 0.973
T2-231 7.372 8.558 20.214 4.284

Objective: tune the slack of those tasks with S > 0, reducing its execution
frequency and yielding low power usage — Slack Reduction Algorithm
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Slack Reduction Algorithm
Previous steps
SECNE

Slack Reduction Algorithm

Slack Reduction Algorithm

@ Frequency assignment
@ (Critical subpath extraction
© Slack reduction
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Introduction
Slack Reduction Algorithm Application

Previ eps

Slack reduction

Slack Reduction Algorithm

Slack Reduction Algorithm

@ Frequency assignment
@ (Critical subpath extraction
© Slack reduction

Freque assignme

Example: LU factorization
with incremental pivoting
of 3x3 blocks:

@ Discrete collection of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz
@ We have obtained execution time of tasks running at each available frequency
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Introduction

Slack Reduction Algorithm Application
Previous steps
Slack reduction

Critical subpath extraction

ritical subpath extraction

Iteration 0
T2231
(7.372)
CP; Tasks Execution time
CPy {G.111,G2.211,T2.221,G 222, G2_322, T2_332, G_333} 35.171 ms
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Introduction
Slack Reduction Algorithm Application

Previous steps

Slack reduction

Critical subpath extraction

Critical subpath extracti

Iteration 1 -\
T2.331
(7.372)
G2.311
(5.246)
T-121 T2.321
(4.273) (7.372)
CP; Tasks Execution time
CP, {G.111,G2211,T2.221, G222, G2.322, T2_332, G_333} 35.171 ms
CP,  {T.131,T2.231, T 232} 15.918 ms
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Introduction
Slack Reduction Algorithm Application

Previous steps

Slack reduction

Critical subpath extraction

Critical subpath extraction

Iteration 2

G2.311

(5.246)

T-121 T2.321

(4.273) (7.372)
CP; Tasks Execution time
CP, G-111,G2.211, T2_221, G222, G2_322, T2_332, G_333} 35.171 ms
CP, T_131, T2 231, T_232} 15.918 ms
CP; G2_311, T2,331} 12.619 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Introduction
Slack Reduction Algorithm Application

Previous steps

Slack reduction

Critical subpath extraction

Critical subpath extraction

Iteration 3
CP; Tasks Execution time
CP, G_111, G2_211, T2_221, G_222, G2_322, T2_332, G_333} 35.171 ms
CcP, T_131,T2.231, T,232} 15.918 ms
CP, G2_311, T2,331} 12.619 ms
CP;  {T.121,T2.321} 11.646 ms
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Slack Reduction Algorithm

Slack reduction

Slack Reduction

Process critical subpath CP; = {T_131,T2_231, T_232}:

@ Increase ratio for CP;: d(G’i11WT13,2()C73‘1’§G’111“T’131) = ﬂ,;;g =1,33%
@ Slack is reduced by reducing execution frequency of task:
@ T_131: 2.00 GHz = 1.50 GHz;
@ T2.231: 2.00 GHz = 1.50 GHz;
@ T_232: 2.00 GHz = 1.50 GHz;

4.273 ms = 5.598 ms;
7.372 ms = 9.690 ms;
4.273 ms = 5.598 ms;

Total execution time:
35.171 ms
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Slack Reduction Algorithm

Slack reduction

Slack Reduction

Process critical subpath CP; = {T_131,T2_231, T_232}:

@ Increase ratio for CP;: d(G’i11WT13,2()C73‘1’§G’111“T’131) = ﬂ,;;g =1,33%
@ Slack is reduced by reducing execution frequency of task:
@ T_131: 2.00 GHz = 1.50 GHz;
@ T2.231: 2.00 GHz = 1.50 GHz;
@ T_232: 2.00 GHz = 1.50 GHz;

4.273 ms = 5.598 ms;
7.372 ms = 9.690 ms;
4.273 ms = 5.598 ms;

Total execution time:
35.867 ms > 35.171 ms

Pedro Alonso et al DVFS for Dense Linear Algebra Operations on Multi-Core Processors



Slack Reduction Algorithm

Slack reduction

Slack Reduction

Process critical subpath CP; = {T_131,T2_231, T_232}:

d(6-111~T.232) —d(GA1T31) _ 21176 _ 1 3307
- b

@ Increase ratio for CP;: T(cPy) = T5010

@ Slack is reduced by reducing execution frequency of task:

@ T_131: 2.00 GHz = 1.50 GHz; 4.273 ms = 5.598 ms;
@ T2.231: 2.00 GHz = 1.50 GHz; 7.372 ms = 9.690 ms;
@ T_232: 2.00 GHz = +56-GHz 2.00 GHz; 4.273 ms = 5-598-ms 4.273 ms;

Total execution time:
35.171 ms
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Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP, = {G2_311,T2_331}:

. . d(G111~5T2.331) —d(G111~>G2.311) _ 21,176 __
@ [Increase ratio for CP;: T(cPy) = e = LO6T%

@ Slack is reduced by reducing execution frequency of task:

@ G2.311: 2.00 GHz = 1.20 GHz; 5.246 ms = 8.717 ms;
@ T2_331: 2.00 GHz = 1.20 GHz; 7.372 ms = 12.083 ms;

Total execution time:
35.171 ms
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Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP, = {G2_311,T2_331}:

. . d(G111~5T2.331) —d(G111~>G2.311) _ 21,176 __
@ [Increase ratio for CP;: T(cPy) = e = LO6T%

@ Slack is reduced by reducing execution frequency of task:

@ G2.311: 2.00 GHz = 1.20 GHz; 5.246 ms = 8.717 ms;
@ T2_331: 2.00 GHz = 1.20 GHz; 7.372 ms = 12.083 ms;

Total execution time:
35.676 ms > 35.171 ms
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Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP, = {G2_311,T2_331}:

. . d(G111~5T2.331) —d(G111~>G2.311) _ 21,176 __
@ [Increase ratio for CP;: T(cPy) = e = LO6T%

@ Slack is reduced by reducing execution frequency of task:

@ G2.311: 2.00 GHz = +26-GHz 1.50 GHz; 5.246 ms = &7##ms 7.010 ms;
@ T2_331: 2.00 GHz = 1.20 GHz; 7.372 ms = 12.083 ms;

Total execution time:
35.171 ms
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Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP; = {T_121,T2_321}:

. . d(G.111~>T2.321) —d(G111~~T121) _ 15,030 _
@ |Increase ratio for CP;: TPy = Ii’sss = 1,36 %

@ Slack is reduced by reducing execution frequency of task:

@ T_121: 2.00 GHz = 1.50 GHz; 4.273 ms = 5.598 ms;
@ T2.321: 2.00 GHz = 1.50 GHz; 7.372 ms = 9.690 ms;

Total execution time:
35.171 ms
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Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP; = {T_121,T2_321}:

. . d(G.111~>T2.321) —d(G111~~T121) _ 15,030 _
@ |Increase ratio for CP;: TPy = Ii’sss = 1,36 %

@ Slack is reduced by reducing execution frequency of task:

@ T_121: 2.00 GHz = 1.50 GHz; 4.273 ms = 5.598 ms;
@ T2.321: 2.00 GHz = 1.50 GHz; 7.372 ms = 9.690 ms;

Total execution time:
36.285 ms > 35.171 ms
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Introduction
Slack Reduction Algorithm

Slack Reduction

Process critical subpath CP; = {T_121,T2_321}:

d(G-111~T2.321) —d(G-111~>T-121) _ 15,930 __
(CP3) = 11,646 1,36 %

@ |Increase ratio for CP;:

@ Slack is reduced by reducing execution frequency of task:

@ T_121: 2.00 GHz = +56-GHz 2.00 GHz; 4.273 ms = 5:598-ms 4.273 ms;
@ T2.321: 2.00 GHz = +56-GHz 2.00 GHz; 7.372 ms = 9-696-ms 7.372 ms;

Total execution time:
35.171 ms
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Race-to-Idle Algorithm

Race-to-Idle Algorithm

Race-to-ldle = complete execution as soon as possible by executing tasks of
the algorithm at the highest frequency to “enjoy” longer inactive periods

@ Alternative strategy to reduce power consumption
@ DAG requires no processing, unlike SRA

@ Tasks are executed at highest frequency, during idle periods CPU
frequency is reduced at lowest possible

o Why?
@ Current processors are quite efficient at saving power when idle

@ Power of idle core is much smaller than power in working periods
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Simulator

Experimental results Results

Simulator

We use a simulator to evaluate the performance of the two strategies

Input parameters:
@ DAG capturing tasks and dependencies of a blocked algorithm and recommended
frequencies by the Slack Reduction Algorithm and Race-to-Idle Algorithm
@ A simple description of the target architecture:

@ Number of sockets (physical processors)
@ Number of cores per socket

@ Discrete range of frequencies and its associated voltages
@ Collection of real power for each combination of frequency idle/busy state per core

@ The cost (overhead) required to perform frequency changes

Static priority list scheduler:
@ Duration of tasks at each available frequency is known in advance

@ Tasks that lie on critical path must be prioritized
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Simulator

Benchmark algorithms

Environmen
Experimental results Results

Benchmark algorithms

Blocked algorithms:

@ LU with partial/incremental pivoting
@ Block size: b = 256
@ Matrix size varies from 768 to 5,632

@ Execution time of tasks on AMD Opteron 6128 (8 cores)
@ LU with incremental pivoting: tasks G, T, G2 and T2

@ LU with partial (row) pivoting: Duration of tasks G and M depends on the iteration!

We evaluate the time of 1 flop for each type of task; then, from the theoretical cost
of the task we obtain an approximation of its execution time
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Environment setup
erimental results Results

Environment setup

@ Environment setup
@ AMD Opteron 6128 (1 socket of 8 cores)
@ Discrete range of frequencies: {2.00, 1.50, 1.20, 1.00, 0.80} GHz

@ Power required by the tasks: we measure the power running p copies of the DGEMM
kernel at different frequencies:

Frequency-Running/Idle
7 5

Core 1 2 3 6 7 8 Power (W)
2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 157.60
2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 2.00-R 1.50-R 156.86
1.20-R 1.20-R 1.00-R 1.00-R 1.00-R 0.80-R 0.80-1 0.80-1 113.45
1.20-R 1.20-R 1.00-R 1.00-R 1.00-R 0.80-1 0.80-1 0.80-I 110.37
0.80-R 0.80-R 0.80-1 0.80-1 0.80-I 0.80-1 0.80-1 0.80-1 91.81
0.80-R 0.80-I 0.80-1 0.80-1 0.80-I 0.80-I 0.80-1 0.80-I 88.58

We measure with an internal power meter (ASIC with 25 samples/sec)

@ Frequency change latency (in microseconds):
Destination freq.

2.00 150 1.20 1.00 0.80
g 2.00 - 40.36 43.18 43.77 49.85
&= 1.50 302.5 - 50.98 54.00 58.19
3 1.20 301.7 302.7 - 61.60 66.05
% 1.00 297.4 302.3 306.0 - 74.70
%] -

0.80 291.6 292.7 294.0 295.80
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Bel ithms
Environment setup
Experimental results Results

Metrics

Evaluation = In order to evaluate experimental results obtained with the
simulator, we compare execution time and consumption with no policy and
with SRA/RIA

Metrics:

Execution time

@ Tsra/RiA Policy @ Csra/ria policy = 2oj—1 Wi, = Th
@ Tho policy @ Cio policy = Wipax T (fmax)
@ Impact of SRA/RIA on time @ Impact of SRA/RIA on consumption

TSRA Policy 100 CSRA/RIA Policy 100
No policy

% Tsra/RiA = % Csra/RiA =

Tho policy
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Experimental results Results

LU factorization with partial pivoting

Impact of the SRA/RIA on energy and time for the LU factorization with
partial pivoting:

LU factorization with partial pivoting (b = 256)

S T Impact on consumption of RIA e
= 140 Impact on consumption of SRA == | 140 -
5 IImpact on time otf&l'FIRIQ — IS
Bt mpact on time of S ] ~
2 120 P 120 5
£
Z 100 | - - - 4 100 2
<
5 80| | + 80 32
£ 60 : - 60 =
> %]
@ 40 b ] - 40 2
5 20| ] 420 g
& =
= 0 0
® ¥ O v N v ¥ Q © N ®© © N ® ¥ 9 ©
© A B W F QB o~ kA S 1 S v & I @
~ SO N 1Bk o ® 1 oo o 0 S % & % = m D
I T T - TS S FF ¥ ¥ b B o>
Matrix si:

@ SRA: Time is compromised and increases the consumption for largest problem sizes

@ The increase in execution time is due to the SRA being oblivious to the real resources

@ RIA: Time is not compromised and consumption is maintained for largest problem sizes
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Simulator

Benchmark algorithms

Envir p
Experimental results Results

LU factorization with incremental pivoting

Impact of the SRA/RIA on energy and time for the LU factorization with
incremental pivoting:

LU factorization with incremental pivoting (b = 256)

o T T T T T T T
X Impact on conSumption of RIA" mmmm
= 140 Tifipact on consumption of SRA == | 140 _
g Impact on time off Rlﬁ — IS
i 120 Impact on time of SRA mmm 120 :
£
£ 100 100 &
8 5
= <
3 80 80 =
: 3
=
& 60 60
= n
e 5
& 40 40 2
3 g
S

a
g 20 20 §
g =
g
= 0 0

768 £
1024
1280
1536
792
2048 £
2304
2816

©

el

= 5
Matrix size (n)

@ SRA: Yelds higher execution time that produces an increase in power consumption

@ RIA: Maintains execution time but reduces energy needs
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Conclusions

Conclusions

Idea: Use of DVFS to save energy during the execution of dense linear algebra
algorithms on multi-core architectures

Objective: To evaluate two alternative strategies to save energy consumption

Slack Reduction Algorithm

Race-to-Idle Algorithm

@ DAG requires a processing @ DAG requires no processing

@ Currently does not take into account @ Algorithm is applied on the fly
number of resources

@ Increases execution time when matrix @ Maintains in all of cases execution time
SIZEJCIESES @ Reduce energy consumption (around

@ Increases, also, energy consumption 5%)
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Conclusions

Conclusions and future work

Results of dense linear algorithms: LU with partial/incremental pivoting
@ Simulation under realistic conditions show that RIA produces more energy savings than SRA

@ Current processors are quite good saving power when idle, so It's generally better to run as
fast as possible to produce longer idle periods

@ In our target platform (AMD Opteron 6128) RIA strategy is capable to produce more energy
savings than SRA

@ Power:
Working at highest frequency > Working at lowest frequency > Idle at lowest frequency
Energy savings
@ Reduce environmental impact

@ Reduce electrical costs
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Thanks for your attention!

Questions?
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