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Outline 
  Define a new region of operation, Near-Threshold 

Computing 

  Explore new architectures enabled by key insights of 
computing in the NTC region 

  Present an initial design of a 3D stacked NTC system, 
Centip3De 
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Dark Silicon—The emerging dilemma:  
More and more gates can fit on a die,  

but not all can be turned on at the same time 

Environmental 
Concerns 

Form factor vs.  
Battery Life 

Power Density Limitations 
Circuit supply 

voltages are no 
longer scaling… 

Power does not decrease at the 
same rate that transistor count 

increases 

A = gate area  scaling 1/s2 

C = capacitance  scaling < 1/s Dynamic dominates 

Stagnant 

Shrinking 
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Today: Super-Vth, High Performance, Power Constrained 

Super-Vth 
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Core i7 

3+ GHz 0.5 mW/MHz 

Normalized Power, Energy, & Performance 
 Energy per operation is the key metric for 

efficiency.  Goal: same performance, low 
energy per operation 
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Subthreshold Design 

Super-Vth Sub-Vth 
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500 – 1000X 

12-16X 

Operating in the sub-threshold gives us huge 
power gains at the expense of performance  
OK for sensors! 
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Evolution of Subthreshold Designs 

Phoenix 2 Design (2010) 
- 0.18 µm CMOS 
-Commercial ARM M3 Core 
-Used to investigate: 

• Energy harvesting  
• Power management 

-37.4 µW/MHz 

Subliminal 2 Design (2007) 
-0.13 µm CMOS 
-Used to investigate process variation 
-3.5 µW/MHz 

Subliminal 1 Design (2006) 
-0.13 µm CMOS 
-Used to investigate existence of Vmin 
-2.60 µW/MHz 

Phoneix 1 Design (2008) 
- 0.18 µm CMOS 
-Used to investigate sleep current 
-2.8 µW/MHz / 30pW sleep power 
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Near-Threshold Computing (NTC) 

Super-Vth Sub-Vth 
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~10X 
~50-100X 

~2X 

~6-8X 

Near-Threshold Computing (NTC): 
• >60X power reduction 
• 6-8X energy reduction 

•  Invest portion of extra transistors from 
scaling to overcome barriers 
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Silicon Verification of Trends 

Phoenix 2 Design [Seok’11] 
180nm Design 

1.8V -> 700mV 
~10x NTC Performance Loss 
~7x NTC Energy Reduction 

Seok ISSCC 2011 

Phoenix 2 Processor 
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NTC – Opportunities and Challenges 

  Challenges: 
  Low Voltage Memory 

  New SRAM designs 
  Robustness analysis at near-threshold 

  Variation 
  Razor [Ernst’03] and other in-situ delay monitoring 
  Adaptive body biasing 

  Performance Loss 
  Many-core designs to improve parallelism 
  Core boosting to improve single thread performance 

  Opportunities: 
  New architectures 
  Optimized Processes 
  3D Integration – less thermal restrictions 
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Outline 
  Define a new region of operation, Near-Threshold 

Computing 

  Explore new architectures enabled by key insights of 
computing in the NTC region 

  Present an initial design of a 3D stacked NTC system, 
Centip3De 
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Minimum Energy SRAM 

  SRAM has a lower activity rate than logic 
  VDD for minimum energy operation (VMIN) is higher 
  Running logic at VMIN for SRAM has a small energy penalty 

with increased performance 

Leakage 

Dynamic 

Total 

— 
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Cluster 

L1 

Key Insight: 
•  SRAM is run at a higher VDD than cores with little energy 

penalty, allowing caches to operate faster than the core 

Cluster Cluster Cluster 

Core Core Core Core 

New NTC Architectures 

L1 

BUS / Switched Network 

Next Level Memory 

Core 

L1 

Core 

L1 

Core 

L1 

Core 

L1 

Core 

BUS / Switched Network 

Next Level Memory 

L1 L1 L1 L1 

Design Levers: 
•  Operating Voltage 
•  L1 Size 
•  Number of Cores per Cluster 
•  Number of Clusters 
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Core 

L1 

L2 

L1 Cache Size Tradeoff 

Core 

L1 

L2 

Decreased Miss Rate 

Higher Energy/Access 
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Results – Energy Optimal L1 Size (Single Core) 

  Energy dependency on L1 size 
  Trade-off between L1 and L2 access 
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Clustering Tradeoffs 

CPU CPU CPU CPU 

L1 L1 L1 L1 

L2 

CPU CPU CPU CPU 

L1 L1 

L2 

O X X 

Tradeoffs 
----------------------- 
+ Clustered Sharing 
- Cluster Conflict  
- New Bus 
- L1 Speed 
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Energy Optimal Cluster-based CMP (Fixed Die Size) 



19 19 

19 

19 University of Michigan EnA-HPC -- September 7, 2011 

Full Space Analysis 
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Various Scaling Methods 

  Baseline 
  Single CPU @ 

233MHz 

  Simple CMP 
  One core per L1 
  Vdd scaling 

  Proposed cluster-
based CMP 
 Multiple cores per L1 
  Vdd scaling 

38% 

53% 

71% 4 Cores 
4 L1’s 

2 Cores/Cluster 
3 Clusters 
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Energy Optima for SPLASH2 
  Cluster based architecture with Vdd and Vth scaling 

  Optimal cluster size is 2 for most of the apps 

 Rad choose non-clustered CMP 
  Average: 74% over baseline, 55% over simple CMP 

nc k L1 size/kB energy savings 
over baseline 

energy savings over 
simple CMP 

Cho 3 2 64 70.8% 52.8% 

Fft 2 2 32 72.6% 68.5% 

fmm � 8� 2� 128� 79.7%� 41.6% 

luc � 3� 2� 32� 77.8%� 64.4% 

lun� 2� 2� 64� 69.2%� 58.0% 

rad� 16� 1� 128� 84.2%� 35.1% 

ray� 3� 2� 128� 65.1%� 54.9% 
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Energy Optima w/ Performance Requirements 

  Cluster based approach provides best savings 
  Traditional approach only saves energy at high end 

53% 

32% 

20% 
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Outline 
  Define a new region of operation, Near-Threshold 

Computing 

  Explore new architectures enabled by key insights of 
computing in the NTC region 

  Present an initial design of a 3D stacked NTC system, 
Centip3De 
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A Closer Look at Wafer-Level Stacking 

Dielectric(SiO2/SiN) 
Gate Poly 
STI (Shallow Trench Isolation) 

Oxide 

Silicon 

W (Tungsten contact & via) 
Al (M1 – M5) 
Cu (M6, Top Metal) 

“Super-Contact” 

Illustration from Bob Patti, Tezzaron 
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Next, Stack a Second Wafer & Thin: 
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3rd wafer 

2nd wafer 

1st wafer: controller 

Then, Stack a Third Wafer: 
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Centip3De – 3D NTC Prototype 

Logic - B 
Logic - B 
Logic - A 

DRAM Sense/Logic – Bond Routing 
DRAM 
DRAM 

F2F Bond 

F2F Bond 

Logic - A 

Centip3De Design 
• 130nm, 7-Layer 3D-Stacked Chip 
• 128 - ARM M3 Cores 
• 150mm2 
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  1.9 GOPS (3.8 GOPS in Boost) 
  Max 1 IPC per core 
  128 Cores 
  15 MHz 

  130 mW (691mW in Boost) 
  14.6 GOPS/W (5.5 in Boost) 

Design Scaling and Power Breakdowns 
NTC Centip3De System 

42 

2.9 7.0 

39 

NTC Mode Power (mW) 

Cores 
I-Caches 
D-Caches 
DRAM 

336 

28 

67 

45 

Boosted Mode Power (mW) 

Raytracing Benchmark 

  Naïve Scaling to 22nm yields ~200GOPS/W 
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  Observed Voltage Scaling and 
Thermal Limits reducing the gains of 
Moore’s Law 

  Defined a new computational 
operating region: Near Threshold 
Computing 

  Leveraged key insights of NTC for 
new clustered architectures 

  Initial ideas of a 3D integrated NTC 
system, Centip3De  

Conclusions 
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Backup 
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Logic vs. Memory 
  To maintain same robustness at low voltages SRAM cell sizes needs 

to be increased to compensate effects of process variation 
  Increased size leads to higher energy consumption, and longer 

interconnects 
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Proposed Parallel Architecture 
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Energy Optimal Vth Selection 

  Vth is very high 
  Energy optimal Vdd is 

independent of Vth 
  Free performance gain 

without consuming more 
energy 

  As Vth reduces 
  Circuit operates faster 
  More leakage, more energy 

consumption per switching 

  Choose Vth 
  Body bias 
  Dopant implant 


