Towards an Energy-Aware

Scientific I/O Interface

Stretching the ADIOS Interface to Foster Performance Analysis
and Energy Awareness

Julian M. Kunkel, Timo Minartz, Michael Kuhn, Thomas Ludwig

julian.martin.kunkel@informatik.uni-hamburg.de

Scientific Computing
Department of Informatics
University of Hamburg

08.09.2011
1form
die zukunft

1/26

Introduction

Introduction

form
die zukunft

Julian M. Kunkel ParCo 2011 2/26

t for analysis tools Fostering energy efficiency

Motivation

Conserving energy

m Hardware components can be put into a low power state.
m But transitions between power states are time consuming.
m Intelligent switching of states is important.

m Avoid (minimize) slow down of programmes.
®m Induced noise endangers synchronization of processes.

Intelligent switching of states

m Knowledge of future program activity is required.
m Automatic vs. manual switching.

B The OS has little information about future activity.
m Developers have an idea about the program.

Julian M. Kunkel ParCo 2011 3/26

Fostering energy efficiency

Motivation

Problem of manual annotation

m Convince developers to use the “new” interface is hard.
m Benefit vs. work.

m Tedious work to annotate
m Also, the developer must think about future activity.

m Error-prone
m Sometimes manual annotations are incorrect.

Proposed solution

Extend an existing I/O interface to support annotated phases.
A library analyzes phases at runtime and controls hardware.

Julian M. Kunkel ParCo 2011 4/26

Introduction C € 3enefit fo ysis tools ostering energy efficiency

Phases

Phase concept

m Phases span a longer period of execution and achieves a goal.
m Across multiple function calls, or just a part of a loop.

m Names encode high-level semantics.
m “Pre-processing”, “Input of topological data”, “iteration”...

m The same name can be used to encode similar behavior.
m “Exchange-neighbour ghost cells”

Julian M. Kunkel ParCo 2011 5/26

Fostering energy efficiency

Extension of an existing I/O interface

Benefit of the extended interface/library

m Improve knowledge to estimate phase time — optimize I/O.
m Caching and background optimizations get more time.

m Available phase information can be given to performance tools.
m Performance analysis is enriched with phase information.

m Automatic control of power states in the devices.
m Reduce energy consumption.

Adaption of the interface

Threefold benefit of the light-weight interface might convince users.

Julian M. Kunkel ParCo 2011 6/26

H ADIOS

Julian M. Kunkel ParCo 2011 7/26

t for analysis tools Fostering energy efficiency

Introduction of ADIOS

Adaptable 10 System

m Alternative high-level I/O interface.
® Annotations of variables similar to HDF5.
m Offers various back-ends: POSIX, MPI-IO, NULL or in-situ vis.
m BP file format.
® Throughput oriented, avoids synchronization.
m An ADIOS file may be represented by one or multiple objects.
m Easy conversion of BP files into NetCDF or HDF5.
m XML specification of variables and run-time parameters.

m Adapt programs to the site’s file system without code adjustment.
m Translate XML into C or Fortran code to read/write data.

Julian M. Kunkel ParCo 2011 8/26

Listing 1: Sketched ADIOS code

int NX = 10, NY = 10, NZ = 100; double matrix[NX][NY][NZ];
MPI_Comm comm = MPI_COMM_WORLD; int64_t adios_handle;
int adios_err; uint64_t adios_groupsize, adios_totalsize;

MPI_Init(&argc, &argv); MPI_Comm_rank(comm, &rank);
adios_init("example.xml");

for (t =0; t <10 ; t++) {
adios_start_calculation();
/* computation x/
adios_stop_calculation();
/* MPI communication */
adios_open(&adios_handle, "fullData", "testfile.bp", ==
— ? "w": "a", &comm);
#include "gwrite_fullData.ch"
adios_close(adios_handle);
/* Indicate progress for write-behind x/
adios_end_iteration();

}

adios_finalize(rank); MPI_Finalize(); return 0;

Listing 2: ADIOS example code — gwrite_fullData.ch

adios_groupsize = 4 \
+ 4\
+ 4\
+ 8 *x (NX) * (NY) * (N2);
adios_group_size (adios_handle, adios_groupsize, &adios_totalsize);
adios_write (adios_handle, "NX", &NX);
adios_write (adios_handle, "NY", &NY);
adios_write (adios_handle, "NZ", &NZ);
adios_write (adios_handle, "matrix_data", matrix);

© ® N o U A& W N =

|
This code is automatically generated from the XML.

Benefit for analysis tools Fostering energy efficiency

Efficient 1/0O

m ADIOS aggressively caches data.

m Write-behind during compute phases.
m Function call indicates the speed of iterative programs.

User control in the XML

m Pick the best suitable backend for a supercomputer and task.

m Set optimal parameters such as the cache size.
m Instruct to create derived data (histograms).

Julian M. Kunkel ParCo 2011 11/26

ADIOS
oe

ADIOS XML code

<adios-config host-language="C">
<adios-group name="fullData" coordination-communicator="comm"
time-index="iteration">
<attribute name="description" path="/fullData"
value="Global array of memory data" type="string"/>
<var name="NX" type="integer"/>
<var name="NY" type="integer"/>
<var name="NZ" type="integer"/>
<var name="matrix data" gwrite="matrix" type="double"
dimensions="iteration,NX,NY,NZ"/>
</adios-group>

<analysis adios-group="fullData" var="matrix data"
min="0" max="3000000" count="30"/>
<method group="fullData" method="MPI"/>
<buffer size-MB="80" allocate-time="now"/>
</adios-config>

Julian M. Kunkel ParCo 2011 12/26

immar

E CIAO interface

Julian M. Kunkel ParCo 2011 13/26

Introduction / CIAO interface Benefit for analysis tools Fostering energy efficiency

[Yolelele)

CIAO interface

Extension to ADIOS

m “CIAQ” is used to refer to the modified functions.

m Classification into calculation, communication and I/O phases.
m Add names to phases.

m Goal: Trigger power state and I/O behavior if its advantageous.
m It is necessary to predict future activity!

Julian M. Kunkel ParCo 2011 14/26

-

Listing 3: CIAO example code

adios_init("example.xml");

ciao_open(...);
/* read input */
ciao_close(...);

ciao_start_calculation("pre-processing");
/% pre-process input x/
ciao_end_calculation();

for (t =0; t <10 ; t++) {
ciao_start_calculation("iteration");
/* computation x/
ciao_end_calculation();

ciao_start_communication("exchange-neighbour");
/* communication x/
ciao_end_communication();

ciao_open(&adios_handle, "fullData", "testfile.bp", t == 0 ?
— "w": "a", &comm);
#include "gwrite_fullData.ch"
ciao_close(adios_handle);
}

adios_finalize(rank);

it for analysis tools Fostering energy efficiency

Prediction of future activity

Characterization of phases

m Characterize every named phase:

m Time, performance (CPU, memory, network utilization).
m This also enables to classify the phases automatically!

Prediction of phase characteristics

m Characteristics of repeated invocation might be similar.
m Use old characteristics to predict the current phase with:

m Historic knowledge across program runs.
m Average (or worst case) characteristics.

m The user can offer hints in the XML to set the predictor.

Julian M. Kunkel ParCo 2011 16/26

Introduction / CIAO interface Benefit for analysis tools Fostering energy efficiency

00000

Prediction of future activity

Estimation of program workflow

m But we want to predict more than just the current phase!
m Sequence of phase transitions could be tracked in CIAO.
m Probably “iteration-compute” is followed by “exchange-ghost”.

m = predict future phases to estimate future utilization.
m Coarse grained problem of branch prediction.

Julian M. Kunkel ParCo 2011 17/26

<adios-config host-language="C">
<buffer size-MB="80" allocate-time="now"/>

<estimation debug="statistics">
<inter-phase method="STOCHASTIC" accept-threshold="95%">
<phase name="iteration" method="MIN"/>
<phase name="post-processing” method="HISTORIC"/>
<estimation/>
</adios-config>

Benefit for analysis tools

Benefit for analysis tools

Julian M. Kunkel ParCo 2011 19/26

Benefit for analysis tools Fostering energy efficiency

[1e]

Benefit for analysis tools

Phase knowledge enriches profiling and tracing

m Collect an individual profile for each phase.

m Restrict analysis to phases of interest.
m Automatically start tracing/profiling if the phase is interesting.
m Change in characteristics — interesting.

State of the art

m Phases are already known in performance analysis (TAU, ...)

m But, the information is just used for that purpose.

Julian M. Kunkel ParCo 2011 20/26

Iter

Iter

Checkpointing

Iter

Figure: Tracing MPI activity and node power consumption

Fostering energy efficiency

Fostering energy efficiency

Julian M. Kunkel ParCo 2011 22/26

it for anz ools Fostering energy efficiency

Fostering energy efficiency

Controlling hardware states

m Knowing characteristics of the phase(s) allows efficient control.
m Usage of devices and duration of the phase can be estimated.
m Utilize eeClust interface to announce this knowledge.

E
change
tphase = —P + tchange (1)
diff
Phases and active components
Phase bottleneck 1/0 activity Network activity Potential energy savings
Computation = Write-behind to 1/0 servers 1/0 and NIC
Communication - = 1/0 and CPU
Input/Output Access data and/or buffer data Read data if necessary CPU and NIC

Julian M. Kunkel ParCo 2011 23/26

Summary

B Ssummary

Julian M. Kunkel ParCo 2011 24/26

t for analysis tools Fostering energy efficiency

Summary & Conclusions

m CIAO extends the ADIOS interface.

m Named phases indicate high-level semantics.
m Threefold benefit for the user:
m Performance
m Program analysis
m Energy efficiency
m Monitoring of phase characteristics to steer:
m |/O behavior
m Performance analysis tools
m Hardware power states

Julian M. Kunkel ParCo 2011 25/26

Benefit for analysis tools Fostering energy efficiency

Future Work

m Implementation and evaluation of the general concept.
m We seek collaboration to develop/use an open interface!

Julian M. Kunkel ParCo 2011 26/26

	Introduction
	Motivation
	Motivation
	Phases
	Extension of an existing I/O interface

	ADIOS
	Introduction of ADIOS
	Efficient I/O

	CIAO interface
	CIAO interface
	Prediction of future activity
	Prediction of future activity

	Benefit for analysis tools
	Benefit for analysis tools

	Fostering energy efficiency
	Fostering energy efficiency

	Summary
	Summary & Conclusions
	Future Work

