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Motivation 

Varying power consumption of HPC systems 

– Depends on changing utilization of components over time

 (processors, memory, network, and storage) 

– Applications typically do not use all components to their capacity 

– Potential to conserve energy in underutilized components 

 (DVFS, reduce link speed in network, etc.) 

– But power management can decrease performance 

HPC tailored energy efficiency benchmark needed 

– Evaluate power management effectiveness for different degrees 

of capacity utilization 

– Compare different systems 
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eeMark – Energy Efficiency Benchmark 

Requirements 

Benchmark Design 

– Process groups and kernel sequences 

– Power measurement and reported result 

Kernel Design 

– compute kernels 

– I/O kernels 

– MPI kernels 

Initial results 

Summary 

Daniel Molka 
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Requirements 

Kernels that utilize different components 

Arbitrary combinations of kernels 

Adjustable frequency of load changes 

Usage of message passing 

Parallel I/O 

Reusable profiles that scale with system size 

Daniel Molka 
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Benchmark Design - Kernels 

Daniel Molka 

3 types of kernels 

– Compute    - create load on processors and memory 

– Communication  - put pressure on network 

– I/O      - stress storage system 

Same basic composition for all types of kernels 

– Three buffers available to each function 

– No guarantees about input other than 

• Data has the correct data type 

• No nan, zero, or infinite values 

– Kernel ensures that output satisfies these requirements as well 

• Buffer data initialized in a way that nan, zero, or infinite do not occur  

 

kernelinput output

data
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Benchmark Design - Kernel Sequences 

Daniel Molka 

2 buffers per MPI process used as input and output 

– Output becomes input of next kernel 

data buffer per kernel 

 

 

 

Input and output used for communication and I/O as well 

– send(input), write(input):    - send or store results 

– receive(output), read(output):  - get input for next kernel 

 

 

kernel1buffer1 buffer2

data1

kernel2 buffer1

data2

kernel3 buffer2

data3
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Profiles 

Define kernel sequences for groups of processes 

– Groups with dynamic size adopt to          

 system size 

• E.g. half the available processes          

 act as producers, the other half           

 as consumers 

• Different group sizes possible 

• Multiple distribution patterns 

– Groups with fixed amount of processes for special purposes 

• E.g. a single master that distributes work 

Define the amount of data processed per kernel 

Define block size processed by every call of kernel  

Daniel Molka 
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Example Profile 

[general] 

iterations=  3 

size=    64M 

granularity=  2M 

distribution=    fine 

 

[Group0] 

size=             fixed 

num_ranks=       1 

function=   mpi_io_read_double, mpi_global_bcast_double-Group0,   

     mpi_global_reduce_double-Group0, mpi_io_write_double 

[Group1] 

size=             dynamic 

num_ranks=       1 

function=   mpi_global_bcast_double-Group0, scale_double_16,    

     mpi_global_reduce_double-Group0  
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Power Measurement 

No direct communication with power meters 

Use of existing measurement systems 

– Dataheap, developed at TU Dresden 

– PowerTracer, developed at University of Hamburg 

– SPEC power and temperature demon (ptd) 

Power consumption recorded at runtime  

– API to collect data at end of benchmark 

Multiple power meters can be used to evaluate large 

systems 

 

Daniel Molka 
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Benchmark Result 

Kernels return type and amount of performed operations 

– workload heaviness = weighted amount of operations 

• Bytes accessed in memory:   factor 1 

• Bytes MPI communication:   factor 2 

• I/O Bytes:       factor 2 

• Int32 and single ops:    factor 4 

• Int64 and double ops:   factor 8 

Performance Score = workload heaviness / runtime  

– billion weighted operations per second 

Efficiency Score = workload heaviness / energy  

– billion weighted operations per Joule  

Combined Score = sqrt(perf_score*eff_score) 

Daniel Molka 
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Example Result file: 

Benchspec: example.benchspec 

  Operations per iteration: 

    - single precision floating point operations:  1610612736 

    - double precision floating point operations:  5737807872 

    - Bytes read from memory/cache:                33822867456 

    - Bytes written to memory/cache:               18522046464 

    - Bytes read from files:                         805306368 

  Workload heaviness: 106.300 billion weighted operations 

Benchmark started: Fri Jun 24 10:43:48 2011 
 

[…] (runtime and score of iterations) 
 

Benchmark finished: Fri Jun 24 10:44:00 2011 

 average runtime: 2.188 s 

 average energy: 492.363 J 

 total runtime:    10.941 s 

 total energy:     2461.815 J 

 Results: 

 - performance score:    48.58 

 - efficiency score:           0.22 

 - combined score:          3.24 

Daniel Molka 
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eeMark – Energy Efficiency Benchmark 

Requirements 

Benchmark Design 

– Process groups and kernel sequences 

– Power measurement and reported result 

Kernel Design 

– compute kernels 

– MPI kernels 

– I/O kernels 

Initial results 

Summary and Outlook 

Daniel Molka 
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Kernel Design - Compute Kernels 

Perform arithmetic operations on vectors 

– Double and single precision floating point 

– 32 and 64 Bit integer 

Written in C for easy portability 

– No architecture specific code (e.g. SSE or AVX intrinsics) 

– Usage of SIMD units depends on autovectorization by compiler 

Adjustable ratio between arithmetic operations and data 

transfers 

– Compute bound and memory bound versions of same kernel 

Daniel Molka 
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Source Code Generation 

Source code created with python based generator 

config file  

– Compiler options 

– Source code optimizations 

• Block size used by kernels to optimize L1 reuse 

• Alignment of buffers 

• Usage of restrict keyword 

• Additional pragmas 

– Lists of available functions and respective templates 

• Few templates for numerous functions 
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Source Code Example 

int work_mul_double_1 (void * input, void * output, void * data, uint64_t size) { 
        int i,j; 
        uint64_t count = (size / sizeof(double))/2048; 
        double * RSTR src1_0 = (double *)input + 0; 
        double * RSTR src2_0 = (double *)data + 0; 
        double * RSTR dest_0 = (double *)output + 0; 
        double * RSTR src1_1 = (double *)input + 512; 
        double * RSTR src2_1 = (double *)data + 512; 
        double * RSTR dest_1 = (double *)output + 512; 
        double * RSTR src1_2 = (double *)input + 1024; 
        double * RSTR src2_2 = (double *)data + 1024; 
        double * RSTR dest_2 = (double *)output + 1024; 
        double * RSTR src1_3 = (double *)input + 1536; 
        double * RSTR src2_3 = (double *)data + 1536; 
        double * RSTR dest_3 = (double *)output + 1536; 
 
        for(i=0; i<count; i++){ 
           for(j=0;j<512;j++){ 
       dest_0[j] = src1_0[j] * src2_0[j]; 
       dest_1[j] = src1_1[j] * src2_1[j]; 
       dest_2[j] = src1_2[j] * src2_2[j]; 
       dest_3[j] = src1_3[j] * src2_3[j]; 
           } 
          src1_0+=2048; 
     src2_0+=2048; 
          dest_0+=2048; 
          src1_1+=2048; 
    src2_1+=2048; 
          dest_1+=2048; 
          src1_2+=2048; 
    src2_2+=2048; 
          dest_2+=2048; 
          src1_3+=2048; 
    src2_3+=2048; 
          dest_3+=2048; 
        } 
 return 0; 
} 

Daniel Molka 

Simple loop form 

(i=0;i<n;i++) 

No calculation within array 

index 

Coarse grained loop 

unrolling to provide 

independent operations 
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Kernel Design - Communication and I/O Kernels 

MPI kernels 

– bcast/reduce involving all ranks 

– bcast/reduce involving one rank per group 

– bcast/reduce within a group 

– send/receive between groups  

– rotate within a group  

I/O kernels 

– POSIX I/O with one file per process 

– MPI I/O in with one file per group of processes 
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Producer Consumer Example 

Unbalanced workload 

– Consumers wait in MPI_Barrier 

– Higher power consumption during MPI_Barrier than in active 

periods of consumers 

Daniel Molka 
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POSIX I/O Example 

Process 0 collects data from workers and writes to file 

– Usually overlapping I/O and calculation 

– Stalls if file system buffer needs to be flushed to disk 
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Frequency Scaling with pe-Governor 

Process 0-5 compute bound: highest frequency 

Process 6-11 memory bound: lowest frequency 

– High frequency during MPI functions 

Daniel Molka 
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Frequency Scaling with pe-Governor 

Compute bound and memory bound phases in all 

processes 

Frequency dynamically adjusted by pe-Governor 
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Frequency Scaling Governor Comparison 

Workload ondemand governor pe-Governor 

runtime [ms] energy [J] runtime energy 

All ranks compute bound 4911 1195 +0.6% +1.8% 

All ranks memory bound 4896 1299 +0.8% -10.7% 

Compute bound and memory 

bound group 

4939 1267 -0.4% -6.1% 

Each rank with compute and 

memory bound kernels 

4856 1273 +4.4% -2.3% 

pe-Governor decides based on performance counters 

– Significant savings possible for memory bound applications 

– Overhead can increase runtime and energy requirements 
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Summary 

Flexible workload  

– Stresses different components in HPC systems 

– Scales with system size 

Architecture independent 

– Implemented in C 

– Uses only standard interfaces (MPI, POSIX) 

– Simple code that enables vectorization by compilers 

Report with performance and efficiency rating 

– Evaluate effectiveness of power management 

– Compare different systems 
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Thank you 

Further Information at eeClust homepage 

– www.eeClust.de 
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http://www.eeclust.de/

