
 

Daniel Molka (daniel.molka@tu-dresden.de) 

Daniel Hackenberg (daniel.hackenberg@tu-dresden.de) 

Robert Schöne (robert.schoene@tu-dresden.de) 

Timo Minartz (timo.minartz@informatik.uni-hamburg.de) 

Wolfgang E. Nagel(wolfgang.nagel@tu-dresden.de) 

 

Center for Information Services and High Performance Computing (ZIH) 

Flexible Workload Generation for  

HPC Cluster Efficiency Benchmarking 

07.09.2011 

mailto:daniel.molka@tu-dresden.de
mailto:daniel.molka@tu-dresden.de
mailto:daniel.molka@tu-dresden.de
mailto:daniel.hackenberg@tu-dresden.de
mailto:daniel.hackenberg@tu-dresden.de
mailto:daniel.hackenberg@tu-dresden.de
mailto:robert.schoene@tu-dresden.de
mailto:robert.schoene@tu-dresden.de
mailto:robert.schoene@tu-dresden.de
mailto:timo.minartz@informatik.uni-hamburg.de
mailto:timo.minartz@informatik.uni-hamburg.de
mailto:timo.minartz@informatik.uni-hamburg.de
mailto:wolfgang.nagel@tu-dresden.de
mailto:wolfgang.nagel@tu-dresden.de
mailto:wolfgang.nagel@tu-dresden.de


2 2 

Motivation 

Varying power consumption of HPC systems 

– Depends on changing utilization of components over time

 (processors, memory, network, and storage) 

– Applications typically do not use all components to their capacity 

– Potential to conserve energy in underutilized components 

 (DVFS, reduce link speed in network, etc.) 

– But power management can decrease performance 

HPC tailored energy efficiency benchmark needed 

– Evaluate power management effectiveness for different degrees 

of capacity utilization 

– Compare different systems 

 

Daniel Molka 



3 3 

eeMark – Energy Efficiency Benchmark 

Requirements 

Benchmark Design 

– Process groups and kernel sequences 

– Power measurement and reported result 

Kernel Design 

– compute kernels 

– I/O kernels 

– MPI kernels 

Initial results 

Summary 

Daniel Molka 



4 4 

Requirements 

Kernels that utilize different components 

Arbitrary combinations of kernels 

Adjustable frequency of load changes 

Usage of message passing 

Parallel I/O 

Reusable profiles that scale with system size 

Daniel Molka 



5 5 

Benchmark Design - Kernels 

Daniel Molka 

3 types of kernels 

– Compute    - create load on processors and memory 

– Communication  - put pressure on network 

– I/O      - stress storage system 

Same basic composition for all types of kernels 

– Three buffers available to each function 

– No guarantees about input other than 

• Data has the correct data type 

• No nan, zero, or infinite values 

– Kernel ensures that output satisfies these requirements as well 

• Buffer data initialized in a way that nan, zero, or infinite do not occur  

 

kernelinput output

data



6 6 

Benchmark Design - Kernel Sequences 

Daniel Molka 

2 buffers per MPI process used as input and output 

– Output becomes input of next kernel 

data buffer per kernel 

 

 

 

Input and output used for communication and I/O as well 

– send(input), write(input):    - send or store results 

– receive(output), read(output):  - get input for next kernel 

 

 

kernel1buffer1 buffer2

data1

kernel2 buffer1

data2

kernel3 buffer2

data3



7 7 

Profiles 

Define kernel sequences for groups of processes 

– Groups with dynamic size adopt to          

 system size 

• E.g. half the available processes          

 act as producers, the other half           

 as consumers 

• Different group sizes possible 

• Multiple distribution patterns 

– Groups with fixed amount of processes for special purposes 

• E.g. a single master that distributes work 

Define the amount of data processed per kernel 

Define block size processed by every call of kernel  

Daniel Molka 

A

idle

(a) (b) (c)

B



8 8 

Example Profile 

[general] 

iterations=  3 

size=    64M 

granularity=  2M 

distribution=    fine 

 

[Group0] 

size=             fixed 

num_ranks=       1 

function=   mpi_io_read_double, mpi_global_bcast_double-Group0,   

     mpi_global_reduce_double-Group0, mpi_io_write_double 

[Group1] 

size=             dynamic 

num_ranks=       1 

function=   mpi_global_bcast_double-Group0, scale_double_16,    

     mpi_global_reduce_double-Group0  

 

Daniel Molka 



9 9 

Power Measurement 

No direct communication with power meters 

Use of existing measurement systems 

– Dataheap, developed at TU Dresden 

– PowerTracer, developed at University of Hamburg 

– SPEC power and temperature demon (ptd) 

Power consumption recorded at runtime  

– API to collect data at end of benchmark 

Multiple power meters can be used to evaluate large 

systems 

 

Daniel Molka 



10 10 

Benchmark Result 

Kernels return type and amount of performed operations 

– workload heaviness = weighted amount of operations 

• Bytes accessed in memory:   factor 1 

• Bytes MPI communication:   factor 2 

• I/O Bytes:       factor 2 

• Int32 and single ops:    factor 4 

• Int64 and double ops:   factor 8 

Performance Score = workload heaviness / runtime  

– billion weighted operations per second 

Efficiency Score = workload heaviness / energy  

– billion weighted operations per Joule  

Combined Score = sqrt(perf_score*eff_score) 

Daniel Molka 



11 11 

Example Result file: 

Benchspec: example.benchspec 

  Operations per iteration: 

    - single precision floating point operations:  1610612736 

    - double precision floating point operations:  5737807872 

    - Bytes read from memory/cache:                33822867456 

    - Bytes written to memory/cache:               18522046464 

    - Bytes read from files:                         805306368 

  Workload heaviness: 106.300 billion weighted operations 

Benchmark started: Fri Jun 24 10:43:48 2011 
 

[…] (runtime and score of iterations) 
 

Benchmark finished: Fri Jun 24 10:44:00 2011 

 average runtime: 2.188 s 

 average energy: 492.363 J 

 total runtime:    10.941 s 

 total energy:     2461.815 J 

 Results: 

 - performance score:    48.58 

 - efficiency score:           0.22 

 - combined score:          3.24 

Daniel Molka 



12 12 

eeMark – Energy Efficiency Benchmark 

Requirements 

Benchmark Design 

– Process groups and kernel sequences 

– Power measurement and reported result 

Kernel Design 

– compute kernels 

– MPI kernels 

– I/O kernels 

Initial results 

Summary and Outlook 

Daniel Molka 



13 13 

Kernel Design - Compute Kernels 

Perform arithmetic operations on vectors 

– Double and single precision floating point 

– 32 and 64 Bit integer 

Written in C for easy portability 

– No architecture specific code (e.g. SSE or AVX intrinsics) 

– Usage of SIMD units depends on autovectorization by compiler 

Adjustable ratio between arithmetic operations and data 

transfers 

– Compute bound and memory bound versions of same kernel 

Daniel Molka 



14 14 

Source Code Generation 

Source code created with python based generator 

config file  

– Compiler options 

– Source code optimizations 

• Block size used by kernels to optimize L1 reuse 

• Alignment of buffers 

• Usage of restrict keyword 

• Additional pragmas 

– Lists of available functions and respective templates 

• Few templates for numerous functions 

 



15 15 

Source Code Example 

int work_mul_double_1 (void * input, void * output, void * data, uint64_t size) { 
        int i,j; 
        uint64_t count = (size / sizeof(double))/2048; 
        double * RSTR src1_0 = (double *)input + 0; 
        double * RSTR src2_0 = (double *)data + 0; 
        double * RSTR dest_0 = (double *)output + 0; 
        double * RSTR src1_1 = (double *)input + 512; 
        double * RSTR src2_1 = (double *)data + 512; 
        double * RSTR dest_1 = (double *)output + 512; 
        double * RSTR src1_2 = (double *)input + 1024; 
        double * RSTR src2_2 = (double *)data + 1024; 
        double * RSTR dest_2 = (double *)output + 1024; 
        double * RSTR src1_3 = (double *)input + 1536; 
        double * RSTR src2_3 = (double *)data + 1536; 
        double * RSTR dest_3 = (double *)output + 1536; 
 
        for(i=0; i<count; i++){ 
           for(j=0;j<512;j++){ 
       dest_0[j] = src1_0[j] * src2_0[j]; 
       dest_1[j] = src1_1[j] * src2_1[j]; 
       dest_2[j] = src1_2[j] * src2_2[j]; 
       dest_3[j] = src1_3[j] * src2_3[j]; 
           } 
          src1_0+=2048; 
     src2_0+=2048; 
          dest_0+=2048; 
          src1_1+=2048; 
    src2_1+=2048; 
          dest_1+=2048; 
          src1_2+=2048; 
    src2_2+=2048; 
          dest_2+=2048; 
          src1_3+=2048; 
    src2_3+=2048; 
          dest_3+=2048; 
        } 
 return 0; 
} 

Daniel Molka 

Simple loop form 

(i=0;i<n;i++) 

No calculation within array 

index 

Coarse grained loop 

unrolling to provide 

independent operations 



16 16 

Kernel Design - Communication and I/O Kernels 

MPI kernels 

– bcast/reduce involving all ranks 

– bcast/reduce involving one rank per group 

– bcast/reduce within a group 

– send/receive between groups  

– rotate within a group  

I/O kernels 

– POSIX I/O with one file per process 

– MPI I/O in with one file per group of processes 

 

Daniel Molka 



17 17 

Producer Consumer Example 

Unbalanced workload 

– Consumers wait in MPI_Barrier 

– Higher power consumption during MPI_Barrier than in active 

periods of consumers 

Daniel Molka 



18 18 

POSIX I/O Example 

Process 0 collects data from workers and writes to file 

– Usually overlapping I/O and calculation 

– Stalls if file system buffer needs to be flushed to disk 

 

Daniel Molka 



19 19 

Frequency Scaling with pe-Governor 

Process 0-5 compute bound: highest frequency 

Process 6-11 memory bound: lowest frequency 

– High frequency during MPI functions 

Daniel Molka 



20 20 

Frequency Scaling with pe-Governor 

Compute bound and memory bound phases in all 

processes 

Frequency dynamically adjusted by pe-Governor 

 

Daniel Molka 



21 21 

Frequency Scaling Governor Comparison 

Workload ondemand governor pe-Governor 

runtime [ms] energy [J] runtime energy 

All ranks compute bound 4911 1195 +0.6% +1.8% 

All ranks memory bound 4896 1299 +0.8% -10.7% 

Compute bound and memory 

bound group 

4939 1267 -0.4% -6.1% 

Each rank with compute and 

memory bound kernels 

4856 1273 +4.4% -2.3% 

pe-Governor decides based on performance counters 

– Significant savings possible for memory bound applications 

– Overhead can increase runtime and energy requirements 



22 22 

Summary 

Flexible workload  

– Stresses different components in HPC systems 

– Scales with system size 

Architecture independent 

– Implemented in C 

– Uses only standard interfaces (MPI, POSIX) 

– Simple code that enables vectorization by compilers 

Report with performance and efficiency rating 

– Evaluate effectiveness of power management 

– Compare different systems 

Daniel Molka 



23 23 

Thank you 

Further Information at eeClust homepage 

– www.eeClust.de 

 

 

 

Daniel Molka 

http://www.eeclust.de/

