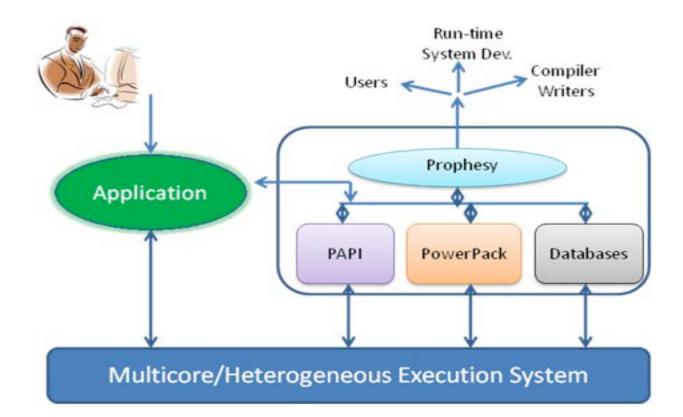
Power-Aware Predictive Models of Hybrid (MPI/OpenMP) Scientific Applications on Multicore Systems

Charles Lively III*, Xingfu Wu*, Valerie Taylor*, Shirley Moore+, Hung-Ching Chang^, Chun-Yi Su^, and Kirk Cameron^ *Department of Computer Science & Engineering, Texas A&M University +Electrical Engineering and Computer Science, University of Tennessee-Knoxville ^Department of Computer Science, Virginia Tech

Introduction

- Current trends in HPC put great focus on constraining power consumption without decreasing performance.
- Multicore systems are hierarchical and can consist of heterogeneous components.
- Understanding the mapping of scientific applications onto multicore and heterogeneous systems is necessary to optimize performance and power consumption.
- Goal: Accurate models for performance and power consumption of scientific applications on multicore and heterogeneous systems


Approach and Research Questions

- Application-specific models are used to explore common and different characteristics of hybrid (MPI+OpenMP) scientific applications.
- 1. Which combination of performance counters should be used to model performance and power consumption of each component?
 - System, CPU, memory
- 2. Which application and system characteristics most affect runtime and power consumption?
- 3. Which aspects of hybrid applications and systems need to be optimized to improve power-performance on multicore systems?

General Methodology

- Explore which application characteristics (via performance counters) affect power consumption of system, CPU, and memory
- Develop accurate models based on hardware counters for predicting power consumption of system components
- Develop different models for each application class (Previous work used same set of performance counters across all applications).
- Validate predictions using actual power measurements

MuMMI Framework

Multiple Metrics Modeling Infrastructure (MuMMI) http://www.mummi.org/

<u>SystemG</u>

Configuration of SystemG		
Mac Pro Model Number Total Cores Total Nodes Cores/Socket Cores/Node CPU Type Memory/Node L1 Inst/D-Cache per core L2 Cache/Chip Interconnect	MA970LL/A 2,592 324 4 8 Intel Xeon 2.8Ghz Quad-Core 8GB 32-kB/32-kB 12MB QDR Infiniband 40Gb/s	

- Largest power-aware compute system in the world
- Over 30 power and thermal sensors per node
- http://scape.cs.vt.edu/

Modeling Methodology

- Training Set: 5 training execution configurations
 1x1, 1x2, 1x3, 1x8, and 2x8
- 16 larger execution configurations are predicted. - 1x4, 1x5,...3x8, 4x8, 5x8,16x8
- 40 performance counter events are captured.
- Performance counter events are normalized per cycle.
- Performance-Tuned Supervised Principal Component Analysis Method is utilized to select combination of performance counters for each application.

- 1. Compute Spearman's rank correlation for each application and system component
- 1. Eliminate counters with low correlation
- 2. Compute regression model based upon performance counter event rates
- 3. Eliminate performance counters with negligible regression coefficients
- 4. Compute principal components of reduced performance counter space
- 5. Use performance counters with highest PCA vectors to build multivariate linear regression model

Repeat the process for each application/system component pair.

EnAHPC 2011

- 1. Compute Spearman's rank correlation.
- 2. Eliminate counters with low correlation, based on β_{ai} threshold. Example: BT-MZ correlation values for runtime

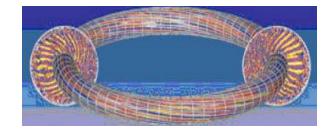
Hardware Counter	Correlation Value
PAPI_TOT_INS	0.9187018
PAPI_FP_OPS	0.9105984
PAPI_L1_TCA	0.9017512
PAPI_L1_DCM	0.8718455
PAPI_L2_TCH	0.8123510
PAPI_L2_TCA	0.8021892
Cache_FLD	0.7511682
PAPI_TLB_DM	0.6218268
PAPI_L1_ICA	0.6487321
Bytes_out	0.6187535

- 3. Compute regression model based upon counter event rates.
- 4. Eliminate counters will negligible regression coefficients.

Hardware Counter	Regression Coefficient
PAPI_TOT_INS	0.04183
PAPI_FP_OPS	-0.04219
PAPI_L1_TCA	0.00165
PAPI_L2_TCH	0.01875
PAPI_L2_TCA	0.100187
Cache_FLD	-0.71548
PAPI_TLB_DM	0.008418
PAPI_L1_ICA	-0.000048
Bytes_out	0.00085

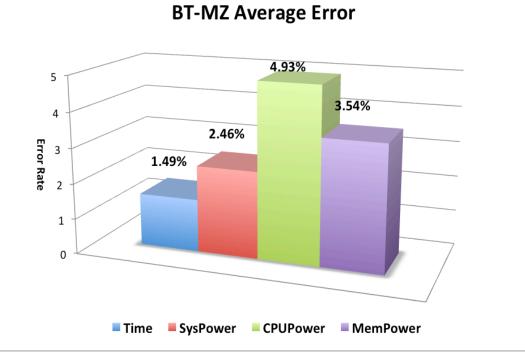
- 5. Compute principal components of reduced performance counter space.
 - Determine the variance of each principal component
 - Use the principal components containing at least 90% of data variance
 - Typically first 2 principal components
 - Select counters with significant PCA coefficients
- 5. Use performance counters with highest PCA vectors to build multivariate linear regression model:

 $y = \beta_0 + \beta_1^* r_1 + \beta_2 r_2 + \beta_3^* r_3 \dots + \beta_n^* r_n$

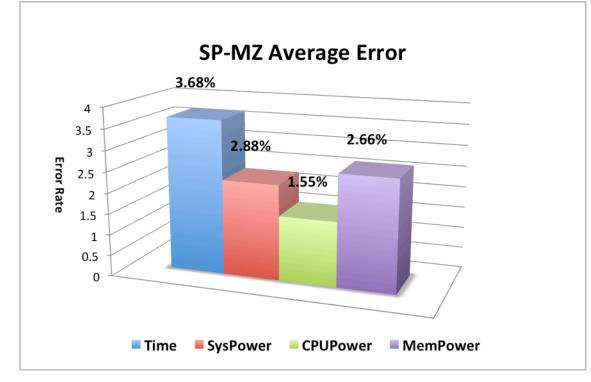

Performance Counter Events

• 15 performance counters used in this Work

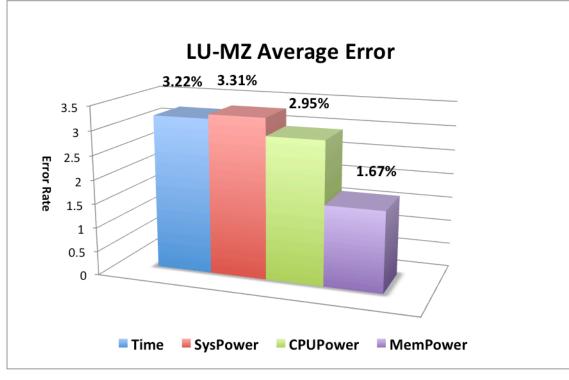
Counter	Description
PAPI_TOT_INS	Total instructions completed
PAPLTLB_ DM	TLB misses
PAPI_L1_TCA	L1 cache total accesses
PAPI-L1-ICA	L1 instruction cache accesses
PAPI_L1_TCM	L1 total cache misses
PAPI_L1_DCM	L1 data cache misses
PAPI_L2_TCH	L2 total cache hits
PAPI_L2_TCA	L2 total cache accesses
PAPI_L2_ICM	L2 instruction cache misses
PAPI_BR_INS	Branch instructions completed
PAPI_RES_STL	System stalls on any resource
Cache_FLD_per_instruction	L1 writes/reads/hits/misses
LD_ST_stall_per_cycle	Load/stores stalls per cycle


Applications

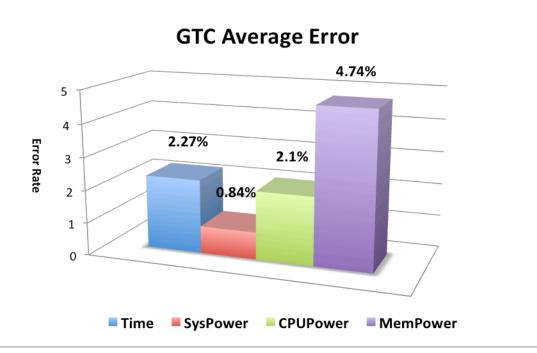
- NAS Multizone Benchmark Suite
 - written in Fortran
 - Uses MPI and OpenMP for communication
 - Block Tri-diagonal algorithm (BT-MZ)
 - represents realistic performance case for exploring discretization meshes in parallel computing
 - Scalar Penta-diagonal algorithm (SP-MZ)
 - representative of a balanced workload
 - Lower-Upper symmetric Gauss-Seidel algorithm (LU-MZ)
 - coarse-grain parallelism of LU-MZ is limited to 16 MPI processes
- Large-Scale Scientific Application
 - Gyrokinetic Toroidal code (GTC)
 - 3D particle- in-cell application
 - Flagship SciDAC fusion microturbulence code
 - written in Fortran90
 - Uses MPI and OpenMP for communication


BT-MZ Results

	Time		System Power		CPU Power		Memory Power	
BT-MZ	Cache_FLD	-1.611	PAPI_L2_TCH	-1.6769	PAPI_L1_TCM	3.5432	PAPI_L1_TCA	0.0763
	PAPI_TOT_INS	0.0967	PAPI_L2_TCA	1.5967	PAPI_L2_TCH	-3.9389	PAPI_L1_DCM	4.0496
	PAPI_L2_TCH	0.2992	PAPI_RES_STL	0.0803	PAPI_RES_STL	0.3967	PAPI_L2_TCH	-1.9443
	PAPI_L2_TCA	1.2152					PAPI_L2_TCA	2.1806


SP-MZ Results

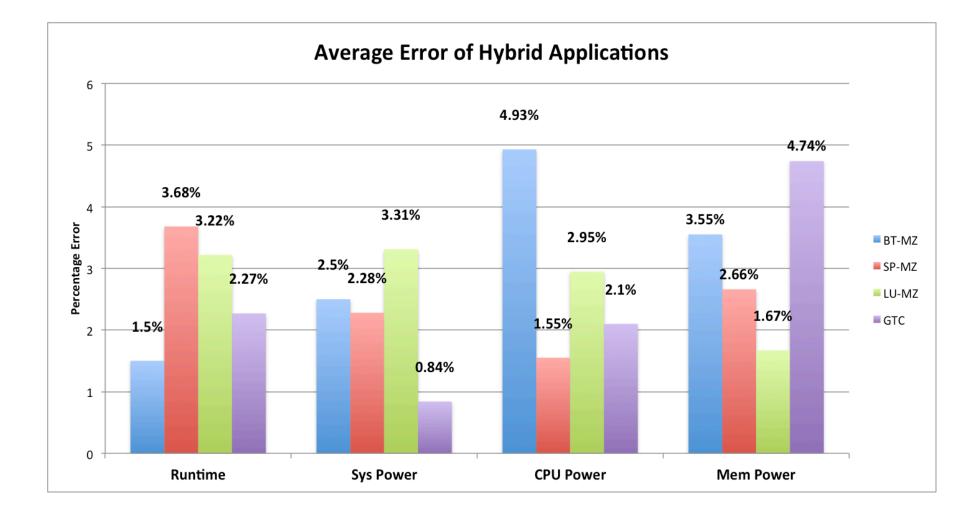
	Time		System Power		CPU Power		Memory Power	
SP-MZ	PAPI_TOT_INS	0.1818	PAPI_L1_ICA	0.355	LD_ST_stall	0.1917	Cache_FLD	0.4563
	PAPI_L1_TCA	0.0744	PAPI_L2_TCH	-1.3452	PAPI_L1_TCM	1.5008	LD_ST_stall	0.0192
	PAPI_L2_TCH	-1.2834	PAPI_L1_TCM	0.9911	PAPI_L2_TCH	-1.6914	PAPI_L2_TCH	-3.5895
	PAPI_L1_TCM	1.1761					PAPI_L2_TCA	3.1151


LU-MZ Results

	Time		System Power		CPU Power		Memory Power	
LU-MZ	Cache_FLD	-0.0006	LD_ST_stall	0.0166	LD_ST_stall	0.0869	PAPI_L1_TCA	0.27923
	PAPI_TOT_INS	0.0011	PAPI_L2_TCH	-0.9886	PAPI_L2_TCH	-8.0003	PAPI_L2_TCH	-3.9574
	PAPI_TLB_DM	3.9085	PAPI_L2_TCA	1.0411	PAPI_L2_TCA	7.9137	PAPI_RES_STL	-0.29141
	PAPI_L2_TCH	-0.0591	PAPI_RES_STL	0.025				

GTC Results

	Time		System Power		CPU Power		Memory Power	
GTC	PAPI_TOT_INS	0.0006	PAPI_RES_STL	1.5689	PAPI_RES_STL	0.9261	PAPI_TOT_IN	0.169617
	PAPI_L2_TCH	-1.8976	PAPI_L2_TCH	-3.2505	PAPI_TOT_IN	0.2663	PAPI_L2_TCH	-2.881
	PAPI_L2_TCA	1.9351	PAPI_L1_TCA	1.6916	PAPI_L1_TCA	0.0816	PAPI_L2_ICM	2.7119
	PAPI_BR_INS	-0.0381			PAPI_L2_TCH	-1.2640		



Application-specific Modeling

• Multivariate regression coefficients

	Time		System Powe	r	CPU Power		Memory Pow	ver
BT-MZ	Cache_FLD	-1.611	PAPI_L2_TCH	-1.6769	PAPI_L1_TCM	3.5432	PAPI_L1_TCA	0.0763
	PAPI_TOT_INS	0.0967	PAPI_L2_TCA	1.5967	PAPI_L2_TCH	-3.9389	PAPI_L1_DCM	4.0496
	PAPI_L2_TCH	0.2992	PAPI_RES_STL	0.0803	PAPI_RES_STL	0.3967	PAPI_L2_TCH	-1.9443
	PAPI_L2_TCA	1.2152					PAPI_L2_TCA	2.1806
	_	_						
SP-MZ	PAPI_TOT_INS	0.1818	PAPI_L1_ICA	0.355	LD_ST_stall	0.1917	Cache_FLD	0.4563
	PAPI_L1_TCA	0.0744	PAPI_L2_TCH	-1.3452	PAPI_L1_TCM	1.5008	LD_ST_stall	0.0192
	PAPI_L2_TCH	-1.2834	PAPI_L1_TCM	0.9911	PAPI_L2_TCH	-1.6914	PAPI_L2_TCH	-3.5895
	PAPI_L1_TCM	1.1761					PAPI_L2_TCA	3.1151
LU-MZ	Cache_FLD	-0.0006	LD_ST_stall	0.0166	LD_ST_stall	0.0869	PAPI_L1_TCA	0.27923
	PAPI_TOT_INS	0.0011	PAPI_L2_TCH	-0.9886	PAPI_L2_TCH	-8.0003	PAPI_L2_TCH	-3.9574
	PAPI_TLB_DM	3.9085	PAPI_L2_TCA	1.0411	PAPI_L2_TCA	7.9137	PAPI_RES_STL	-0.29141
	PAPI_L2_TCH	-0.0591	PAPI_RES_STL	0.025				
GTC	PAPI_TOT_INS	0.0006	PAPI_RES_STL	1.5689	PAPI_RES_STL	0.9261	PAPI_TOT_IN	0.169617
	PAPI_L2_TCH	-1.8976	PAPI_L2_TCH	-3.2505	PAPI_TOT_IN	0.2663	PAPI_L2_TCH	-2.881
	PAPI_L2_TCA	1.9351	PAPI_L1_TCA	1.6916	PAPI_L1_TCA	0.0816	PAPI_L2_ICM	2.7119
	PAPI_BR_INS	-0.0381			PAPI_L2_TCH	-1.2640		

Overall Prediction Accuracy

Related Work

- SoftPower: Power Estimations (Lim, Porterfield, & Fowler)
 - Goal: Develop a surrogate power estimation model using performance counters on the Intel Core i7
 - Use Spearman's rank correlation and robust regression analysis for training runs to derive small set of counters and correlation coefficients
 - Evaluation shows less than 14% error (median 5.3% error)
- Power Estimation & Thread Scheduling (Singh, Bhadhauria, & McKee)
 - Goal: Use hardware counter model to predict power consumption on a system
 - Use Spearman's rank correlation to choose top counter from each of four categories: FP, memory, stalls, instructions retired
 - Derive piecewise linear function for estimating core power
- Reducing Energy Usage with Memory & Computation-Aware Dynamic Frequency Scaling (Laurenzano, Meswani, Carrington, Snavely, Tikir, & Poole)
 - Application signatures characterize execution regions
 - Signatures matched with set of benchmarks intended to form a covering set (machine characterization of expected power consumption over space of execution patterns and clock frequencies
 - Derive dynamic application frequency management strategy

Conclusions

- Predictive performance models for hybrid MPI+OpenMP scientific applications.
 - Execution time
 - System power consumption
 - CPU power consumption
 - Memory power consumption
- 95+% accuracy across four hybrid (MPI+OpenMP) scientific applications

Future Work

- Explore use of microbenchmarks and application classes to derive application-centric models
- Finer-granularity analysis of large-scale hybrid scientific applications
 - Do set of hardware counters and coefficients vary with application region?
- Modeling and prediction across different application input sizes and frequency settings
 - Can hardware counter measurements drive a dynamic frequency scaling strategy?

Acknowledgments

- This work is supported by NSF grants CNS-0911023, CNS-0910899, CNS-0910784, CNS-0905187.
- The authors would like to acknowledge
 Stephane Ethier from Princeton Plasma
 Physics Laboratory for providing the GTC code.

Questions?

