Energy-Efficient Data-Intensive Supercomputing

THE WORLD'S FIRST HYBRID-CORE COMPUTER.

EnA-HPC Conference 7.-9. September 2011 Hamburg

Ernst M. Mutke Technical Director HMK Supercomputing GmbH

Agenda

- A new era of supercomputing
- The next computing frontier
 - Data-intensive Supercomputing
- Convey Architecture Overview
- Energy Savings Examples

A new era of supercomputing

- HPC is changing/growing
 - From compute-intensive to data-intensive
- A new class of problems
 - Extreme data volumes
 - Complex processing
 - Highly dynamic
- Better Energy Efficiency and Peta-Scale Computing

(Image: Lloyd et al/Royal Society)

"Data intensive computing demands a fundamentally different set of principles than mainstream computing."

National Science Foundation
 Directorate for Computer and
 Information Science and
 Engineering

Lessons from history

The growth of numerically-intensive computing

*"The Marketplace of High Performance Computing," July 1999 Erich Strohmaier, Jack J. Dongarra, Hans W. Meuer, and Horst D. Simon

Numerically-intensive computing: Modeling real-world events

- Used to save money, increase product quality, reduce time-to-market
 - Computer simulation of real-world events
 - Requires FLOP/s
 - New ISA (Vector) developed
- Required restructuring of programs
 - New language extensions for vectorization
 - "Smart" compilers find opportunities to generate vector code
- Ultimately supercomputers "replaced" by commodity processors
 - Led to application-specific instructions in x86 architecture (e.g. SSE)
 - Supercomputers today are just huge clusters of x86 ISA with commodity "vector" instructions

Today: It's a data-driven world

Science

 Data bases from astronomy, weather, climate, genomics, bioinformatics, natural languages, seismic modeling, ...

Humanities

Scanned books, historic documents, ...

Commerce

Corporate sales, stock market transactions, census, airline traffic, ...

Entertainment

Internet images, Hollywood movies, MP3 files, ...

Medicine

MRI & CT scans, patient records, ...

Why so much data?

We can produce it

Automation, Internet, Sensors, Instruments

We can keep it

Western Digital Caviar Blue 1TB - \$59.95

We can use it

- Cybersecurity
- Medical Informatics
- Data Enrichment
- Social Networks
- Symbolic Networks

"... But data-intensive applications are quickly emerging as a significant new class of HPC workloads. For this class of applications, a new kind of supercomputer, and a different way to assess them, will be required."

-HPCwire, Nov 2010

The next computing frontier: Data-Intensive Computing

Wal-Mart CRM

- 267 million items/day, sold at 6,000 stores
- 4PB data warehouse
- Mine data to manage supply chain, understand market trends, formulate pricing strategies

Massive Social Networks

 Detecting implicit communities, influential persons for targeted advertising

Data-intensive Computing

Data-intensive Computing

- Growing from the need to reduce computation time
- Conserve cost for energy, cooling, infrastructure, space, etc.
- Make better business decisions, reduce time-tomarket
- Requires restructuring of programs & algorithms
 - New language extensions for MMT
 - "Smart" compilers find opportunities to generate parallel code
- Ultimately will be "replaced" by commodity processors/systems
 - Early data-intensive technology will be woven into mainstream processors

Architectural Characteristics

Reconfigurable compute elements

- Customizable data types
- Application-specific logic
- New [graph] ISA

Supercomputer-inspired memory subsystem

- Latency-tolerant
- Large (TB's), highly-parallel memory
- Reconfigurable architecture
- Efficient random (cache-less) access to memory
- Maintain x86 development ecosystem

Image Source: Giotet al., "A Protein Interaction Map of *Drosophila melanogaster"*, *Science 302*, 1722-1736, 2003.

Parallels

Design philosophies/requirements

- Heterogeneous computing is inevitable
 - And the simplest to program will win
 - Moore's Law is still valid, i.e. more transistors
- Competitive/science pressures demand a different approach
 - Must make better use of transistors
 - Support for large, randomly-accessible memory
 - Order-of-magnitude increases in performance/watt
 - Reduces OS instances, cabling, floor space, cooling requirements and power consumption
- Convey balanced approach provides FPGA-based computing with supercomputing memory subsystems

HPC architectures need: balanced implementations

parallelism (SIMD, etc.)

CPU versus FPGA Comparison

A processor executes instructions
 "C" Code of 4-input logical operation

```
 \begin{array}{c} \mbox{uint32 Log4(uint32 F, uint32 A, uint32 B,} \\ \mbox{uint32 C, uint32 D)} \left\{ \\ \mbox{uint32 R = 0;} \\ \mbox{for (int i = 0; i < 32; i += 1)} \left\{ \\ \mbox{uint32 a = (A >> i) & 1;} \\ \mbox{uint32 b = (B >> i) & 1;} \\ \mbox{uint32 b = (C >> i) & 1;} \\ \mbox{uint32 c = (C >> i) & 1;} \\ \mbox{uint32 d = (D >> i) & 1;} \\ \mbox{uint32 e = (a << 3)} \mid (b << 2) \\ \mbox{| (c << 1) | d;} \\ \mbox{R |= ((F >> e) & 1) << i;} \\ \mbox{return R;} \\ \end{array}
```

Assembly Instructions for Log4 routine:

```
      00401006 xor
      edx,edx

      00401008 mov
      ecx,esi

      0040100A shr
      edx,cl

      0040100C and
      edx,1

      0040100F lea
      edi,[edx+edx]
```

- A loop of 23 instructions are executed
 32 times => 736 inst.
- 736 inst. at 3 GHz would take 245 ns
- A processor core would consume
 6.1x10⁻⁹ Joules (per operation)

An FPGA uses programmable logic

FPGA Logic of 4-input logical operation

- Four logic resources per bit of result
- 32 result bits => 128 logic resources to solve "C" routine
- The FPGA logic would take 2 ns
- An FPGA would consume 5.6x10⁻¹⁵ Joules (per operation)

Hybrid-core Computing

High

Application Performance/ efficiency Power (

Po≪

Performance of application-specific hardware

- Heterogenous solutions
 can be much more efficient
 - still hard to program

Convey Hybrid-Core Systems

Programmability and deployment ease of an x86 server

Multicore solutions

- don't always scale wellparallel programming is hard

Difficult

Ease of Deployment

Easy

HC-1 Hardware

Convey hybrid-core architecture

"Commodity" Intel Server

Convey FPGA-based coprocessor

Supercomputer-inspired memory subsystem

- Optimized for 64-bit accesses; 80 GB/sec peak
- Automatically maintains coherency without impacting AE performance

Random Access Memory Performance

 The problem: gather elements from a large array in memory

```
for(i=0;i<nupd;i++)
Table2[i] = Table1[Index[i]];</pre>
```

- Cache based systems are very inefficient
 - load a whole cache line to access one element
 - random accesses to large arrays generate
 TLB misses
- HC-1 coprocessor delivers a much higher percentage of peak
 - Coprocessor memory system is designed to access 64-bit words
 - Large pages eliminate TLB misses

Future Memory Requirements

- Memory performance will continually become a larger portion of the computational bottleneck
 - Amdahl's Law is a buzz kill when analyzing memory-bound apps... but we know this
- Accesses that are latency sensitive [e.g., not in cache] will become much of the limiting factor
 - As DRAM density increases, we're not doing enough creative engineering to cover the latency hot spots... more stuff through the same soda straws
- Future algorithm and instruction set development needs to comprehend memory, computation, & programming model
 - in order to have a reasonable chance at utilizing new core technologies
- Flexible Memory Configuration to adopt for different memory requirements and memory access patterns

Energy Savings Examples

- Based on performance factor
 - calculate savings in space, energy, air conditioning costs for equivalent performance
- Do not include savings from reducing cabling and OS instances
- Compares equivalent performance of Convey vs. standard x86 systems
- In general, compares 12core (2 x 6-core Westmere)
 x86 servers, but in some cases uses customer
 provided configurations

Velvet/CGC (Data Intensive)

Energy comparison for equivalent performance (1) Convey HC-1 vs Dell R910 1TB

HC-1 128/64 > 5 X 4 socket 1TB Dell R910

	Power Requirements[1]		
~	1 racks (1 nodes) Convey	6.0	MW-h/yr
VE	1 racks (1 nodes) convey 1 racks (6 nodes) x86 1 Year Electricity costs (@ 0.07 /kWh)	73.0	MW-h/yr
Š	1 Year Electricity costs (@ 0.07 /kWh)	[2]	
Δ.	Convey	0.9	K\$/yr
	x86	10.2	K\$/yr
SITE	1 Year Infrastructure costs[3]		
	Convey	1.9	K\$/yr
	X86	18.6	K\$/yr
\sim	3-Year TCO[4]		
5	Convey	89	K\$/yr

[1] Limit rack power to 12 kW

X86

- [2] Includes datacenter power/cooling costs (2x); excludes any "Green" rebates
- [3] Includes prorated 10-year UPS & datacenter floorspace
- [4] Includes purchase, h/w maintenance, power, infrastructure

6 x 4U 4-socket servers

1 x 2U Convey HC-1

Reduction in space	0%
Reduction in datacenter watts	91%
Reduction in 3 yr TCO	84%

570

K\$/yr

Velvet/CGC (Data Intensive)

Energy comparison for equivalent performance Convey HC-1 vs Dell R910 1TB

щ	
~	IC-1 128/64 > 5 X 4 socket 1TB Dell R910
ш	10-T T58/04 > 2 Y 4 SOCKEL TTB DEILKATO
Δ.	

	Power Requirements[1]		
\sim	1 racks (16 nodes) Convey	101.0	MW-h/yr
VE	11 racks (85 nodes) x86	1,032.0	MW-h/yr
POWER	1 Year Electricity costs (@ 0.07 /	′kWh) [2]	
Δ.	Convey	14.1	K\$/yr
	x86	144.4	K\$/yr
SITE	1 Year Infrastructure costs[3]		
	Convey	25.6	K\$/yr
	X86	262.1	K\$/yr
02	3-Year TCO[4]		
	Convey	1,386	K\$/yr
_	X86	8,072	K\$/yr

- [1] Limit rack power to 12 kW
- [2] Includes datacenter power/cooling costs (2x); excludes any "Green" rebates
- [3] Includes prorated 10-year UPS & datacenter floorspace
- [4] Includes purchase, h/w maintenance, power, infrastructure

85 x 4U 4-socket servers

16 x 2U Convey HC-1

Reduction in space	91%
Reduction in datacenter watts	90%
Reduction in 3 yr TCO	83%

SWSearch (Compute Intensive)

Energy comparison for equivalent performance Convey HC-1^{ex} vs 12-socket x86

HC-1ex 32/16 \approx 10 X 12-Core 3.33 GHz x86

	Power Requirements[1]		
~	1 racks (8 nodes) Convey	50.0	MW-h/yr
POWER	3 racks (77 nodes) x86	233.0	MW-h/yr
Ş	1 Year Electricity costs (@ 0.07 /kWh) [2]		
Δ.	Convey	7.1	K\$/yr
	x86	32.6	K\$/yr
111	1 Year Infrastructure costs[3]		
SITE	Convey	12.9	K\$/yr
0)	X86	59.3	K\$/yr
_	3-Year TCO[4]		
Σ	Convey	578	K\$/yr
_	X86	1.184	K\$/vr

- [1] Limit rack power to 12 kW
- [2] Includes datacenter power/cooling costs (2x); excludes any "Green" rebates
- [3] Includes prorated 10-year UPS & datacenter floorspace
- [4] Includes purchase, h/w maintenance, power, infrastructure

77 x 1U 12-core servers

16 x 3U Convey HC-1ex

Reduction in space	67%
Reduction in datacenter watts	78%
Reduction in 3 yr TCO	51%

PCAP (Data & Compute Intensive)

Energy comparison for equivalent performance Convey HC-1 vs 2-socket 8-core x86

HC-1 32/16 > 111 X 2 socket 8-core x86

Power	Req	uirements[1]
-------	-----	------------	----

∝	1 racks (16 nodes) Convey	101.0	W-h/yr
ΝE	53 racks (1775 nodes) x86	5,364.0	W-h/yr

1 Year Electricity costs (@ 0.05 /kWh) [2]

Convey	10.1	K\$/yr
x86	536.4	K\$/yr

1 Year Infrastructure costs[3]
Convey

Convey	25.6	K\$/yr
X86	1 361 7	K\$/vr

3-Year TCO[4]

Convey	996	K\$/yr
X86	19,086	K\$/yr

- [1] Limit rack power to 12 kW
- [2] Includes datacenter power/cooling costs (2x); excludes any "Green" rebates
- [3] Includes prorated 10-year UPS & datacenter floorspace
- [4] Includes purchase, h/w maintenance, power, infrastructure

1,775 x 1U 8-core servers

16 x 2U Convey HC-1

Reduction in space	98%
Reduction in datacenter watts	98%
Reduction in 3 yr TCO	95%

Electricity Cost Comparison

1 Year Electricity costs

*Includes datacenter power/cooling costs @ \$.07/KWh; excludes any "Green" rebates

Graph500: Performance Rank (**Problem Scale 31 and lower**)

					Perf/
Rank	System	Site	Scale	MTEPS	W
13	SGI Altix ICE 8400EX, 256 nodes / 1024 cores	SGI	31	14,085	363
14	NNSA/SC Blue Gene/Q Prototype II (512 nodes)	IBM Research, T.J. Watson	31	11,323	362
15	DAS-4/VU (SuperMicro, 64 nodes / 512 cores)	VU University	31	4,642	91
18	SuperDragon-1 (Sugon, 32 nodes / 384 cores)	Inst of Computing Tech, Beijing	30	1,454	-
21	cougarxmt (Cray XMT, 128 nodes)	PNL	29	1,223	12
22	graphstorm (Cray XMT, 128 nodes)	SNL	29	1,171	12
-	Vortex (Convey HC-1ex, 1 node / 4 cores, 4 FPGAs)	Convey Computer Corporation	27	1,122	1,496
19	Jaguar (Cray XT5-HE, 18,688 nodes / 224,256 cores)	ORNL	30	1,011	0
16	Matterhorn (Cray XMT2, 64 nodes)	CSCS	31	885	18
23	Matterhorn (Cray XMT2, 64 nodes)	CSCS	29	879	18
28	Minerva (IBM iDataPlex, 258 nodes / 3096 cores)	University of Warwick	26	839	-
26	Vortex (Convey HC-1ex, 1 node / 4 cores, 4 FPGAs)	Convey Computer Corporation	27	773	1,031
27	Westmere E7-4870 2.4GHz, 1 node / 40 cores	Intel Research	27	705	320
24	Erdos (Cray XMT, 64 nodes)	ORNL	29	702	14
20	Knot (HP MPI cluster, 8 processors / 64 cores)	UCSB	30	177	9
17	Kraken (Appro, 1 node / 32 cores)	LLNL	31	105	75
29	Neumann (HPC Systems, 32 cores)	UCSB	26	40	6
25	Gordon (Appro, 7 nodes / 84 cores)	SDSC	29	30	3

Observations & Conclusions

- HPC is changing/growing
 - Data-intensive applications are a must for industry
 - Heterogeneous (hybrid) systems are inevitable
- It looks a lot like 1980
 - New architectures to address the challenges of new computing requirements
 - Early adopters establish standards & technology
- Current commodity architectures are not suitable for data intensive jobs
 - Memory subsystems, access pattern and data location
- Need better scalability and cost savings for future data intensive challenges
 - Energy, Cooling, Space, Infrastructure

