




# Energy Efficiency Metrics and Cray XE6 Application Performance

Wilfried Oed Principal Engineer



September 8, 2011

**Cray Proprietary** 

6

### Taking a Step back in History

- What made this machine so unique ?
- Some answers
  - Novel vector architecture
  - Packaging
  - Cooling
  - Fastest scalar machine !!!
  - High productivity for users
    - Autovectorizing compiler
    - Performance analysis tool
    - Simple OS

and no one cared about the power consumption

**Cray Proprietary** 

Slide 2







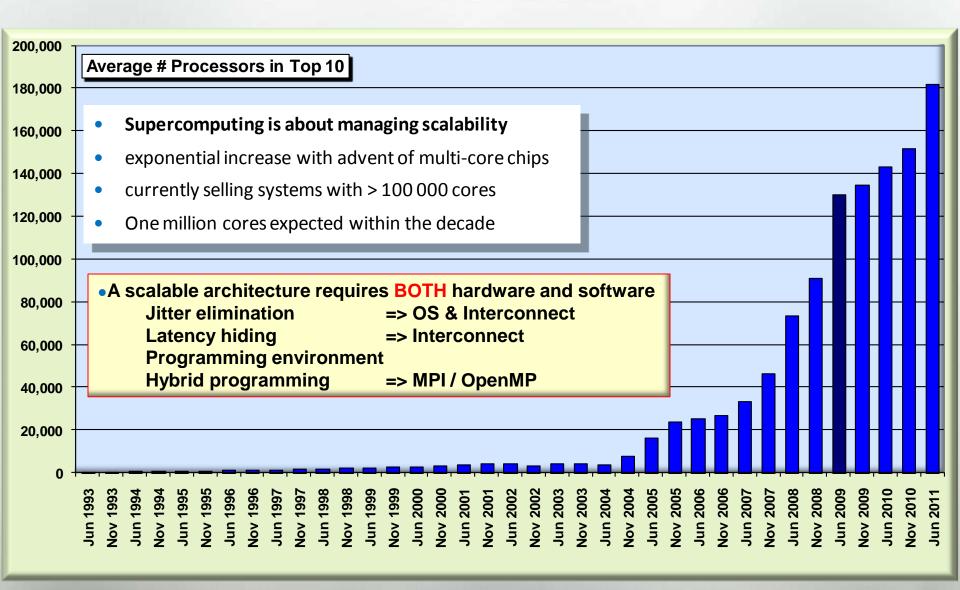
## **Progress in Energy Efficiency**

| Power Consumption for     | 1978       | 1988        | 1998     | 2008      |
|---------------------------|------------|-------------|----------|-----------|
| Cray Systems              | Cray-1     | Cray Y-MP 8 | Cray T3E | Cray XT5  |
| number processors / cores | 1          | 8           | 1,024    | 150,152   |
| power consumption (kW)    | 140        | 200         | 220      | 6,500     |
| Rmax PF                   | 1.50E-07   | 2.10E-06    | 8.92E-04 | 1.06E+00  |
| Flop / Watt               | ~ 0.001 MF | ~ 0.01 MF   | ~ 4 MF   | ~ 150 MF  |
| Efficiency improvement    | 1          | 10          | ~ 4,000  | ~ 150,000 |

- An improvement of 150 thousand in 30 years and still no end in sight !
  - Cray XE6 is ~ 600 MF / W
  - Cray XK6 is ~ 1200 MF / W
- So where's the problem ?
  - Price performance has improved even more dramatically
    - Computing has become ubiquitous
  - The combined systems of the current Green500 require 340 MW
    - That's up 50 MW from previous list
    - Largest system @ 10 MW
  - Supercomputing and HPC are vital tools for science
- An interesting article especially the focus on software

Andrew Jones, Vice-President of HPC Services and Consulting, Numerical Algorithms Group <a href="http://www.hpcwire.com/hpcwire/2011-08-29/exascale: power is not the problem.html">http://www.hpcwire.com/hpcwire/2011-08-29/exascale: power is not the problem.html</a>

#### Cray XE6 Node


#### Cray XK6 Node



**XK6 Compute Node Characteristics** AMD Series 6200 (Interlagos) NVIDIA Tesla X2090 **Host Memory NVIDIA** 16 or 32GB **NVIDIA** 1600 MHz DDR3 NVIDIA Tesla X2090 Memory 6GB GDDR5 capacity AMD Gemini High Speed Interconnect Upgradeable to future GPUs Gemini Interconnect **High Radix YARC** Router with adaptive Routing

#### Supercomputing Today





## Early Science Applications (Cray XT5)



#### **Eight Application World Records Set in First Week (Nov. 2008)!**

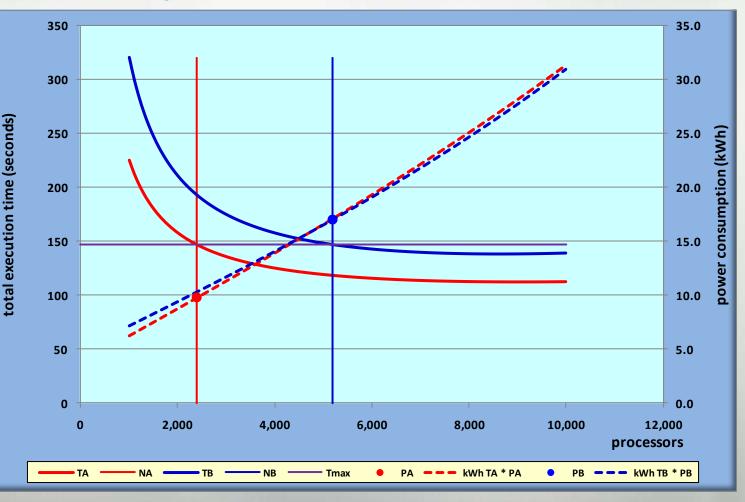
| Science Area | Code      | Contact       | Cores   | Total Perf                    | Notes                   | Scaling |
|--------------|-----------|---------------|---------|-------------------------------|-------------------------|---------|
| Materials    | DCA++     | Schulthess    | 150,144 | 1.3 PF*                       | Gordon Bell<br>Winner   | Weak    |
| Materials    | LSMS/WL   | ORNL          | 149,580 | 1.05 PF                       | 64 bit                  | Weak    |
| Seismology   | SPECFEM3D | UCSD          | 149,784 | 165 TF                        | Gordon Bell<br>Finalist | Weak    |
| Weather      | WRF       | Michalakes    | 150,000 | 50 TF                         | Size of Data            | Strong  |
| Climate      | РОР       | Jones         | 18,000  | 20 sim yrs/<br>CPU day        | Size of Data            | Strong  |
| Combustion   | S3D       | Chen          | 144,000 | 83 TF                         |                         | Weak    |
| Fusion       | GTC       | UC Irvine     | 102,000 | 20 billion<br>Particles / sec | Code Limit              | Weak    |
| Materials    | LS3DF     | Lin-Wang Wang | 147,456 | 442 TF                        | Gordon Bell<br>Winner   | Weak    |



September 8, 2011



## **Energy Efficiency Metrics**


- Power Usage Effectiveness (PUE)
  - Reflects how well a system is being cooled
    - A poorly designed system can still have a wonderful PUE if cooling is efficient
  - Need to define the components that account for "power usage"
- MFLOPS per Watt
  - Reflected in the Green500
  - Emphasizes pure floating-point (HPL)
- Time to Solution (sustained performance) per Watt
  - Supercomputers are there to solve big problems (aka Grand Challenges)
    - An extremely high degree of parallelism is required
    - Besides floating-point, real applications have to deal with communication, organization, load balance
  - Power consumption [kWh] = N<sub>proc</sub> \* P<sub>proc</sub> \* T<sub>max</sub> [kWh]
    - T<sub>max</sub> time allowed to finish the problem
    - N<sub>proc</sub> number of processors (cores) utilized to finish within T<sub>max</sub>
    - P<sub>proc</sub> power utilized per processor (core)
  - This metric is problem oriented and can be applied across various architectures
    - Can also be based on power per *node* for comparing vastly different archictures (e.g. Cray XK6 using hybrid CPU / GPU nodes)

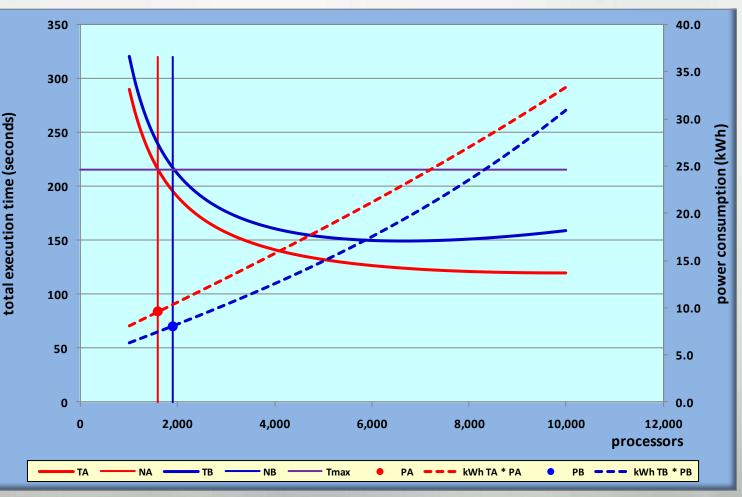
## Comparison at any T<sub>max</sub>

- The lower power processor has the same power on a per core basis
- Despite being a lower power processor and having similar scalability, the higher core count required makes it less efficient regardless of the desired solution time

Note: this is an arbitrary example for demonstrating certain effects

neither based on actual systems nor applications




#### **Cray Proprietary**

## Comparison at higher T<sub>max</sub>

- The lower power processor always requires less power on a per core basis
- At low core counts (higher time to solution) the lower powered processor is more energy efficient, as only a few additional cores are required

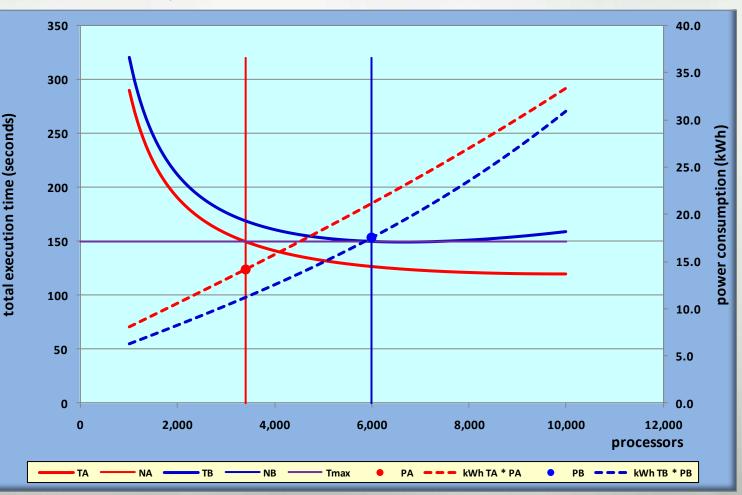
Note: this is an arbitrary example for demonstrating certain effects

neither based on actual systems nor applications



#### **Cray Proprietary**






## Comparison at lower T<sub>max</sub>

- The lower power processor always requires less power on a per core basis
- At higher core counts (lower time to solution) the lower powered processor is less energy efficient, as far more cores are required

Note: this is an arbitrary example for demonstrating certain effects

neither based on actual systems nor applications





#### Applications at EPCC on the HECToR System (Cray XE6)

 A set of scientific applications running on a regular basis at high core counts at EPCC

| Science Area                            | Code      | Nodes | Cores  |  |
|-----------------------------------------|-----------|-------|--------|--|
| Combustion                              | Senga     | 844   | 20,256 |  |
| Materials and MD                        | CASTEP    | 1,024 | 24,576 |  |
| fluid flow/lattice-<br>boltzmann method | Heme1b    | 1,024 | 24,576 |  |
| Materials                               | CRYSTAL   | 1,024 | 24,576 |  |
| Quantum Monte<br>Carlo                  | CASINO    | 664   | 15,936 |  |
| MD                                      | DL_POLY_4 | 683   | 16,392 |  |
| Chemistry                               | Sparkle   | 683   | 16,392 |  |



### Summary & Outlook



- Despite huge progress let's not rest
  - The biggest innovations will have to come from technology
    - Remember: the goal for EXAflop is 20 MW or 50 GF / W
    - Which may questionable => keynote: Jens Wiebe
  - Reclaim energy => driving towards PUE < 1
    - Heating your office is not the answer
  - Throttling CPU performance if higher T<sub>max</sub> can be tolerated
    - Current processors have the ability to operate at different clock speeds already
    - But beware, your overall power consumption may end up to be higher
- Applying the metrics
  - Required is the ability to measure performance on an application level
    - James H. Laros III, Kevin T. Pedretti, Suzanne M. Kelly, John P. Vandyke, Kurt B. Ferreira, Courtenay T. Vaughan, Mark Swan. <u>Topics on Measuring Real Power Usage on High</u> <u>Performance Computing Platforms</u>, IEEE International
  - Energy aware scheduling
- **TUNE** your application (a truck has good mileage only if fully loaded)
  - Scalability is a decisive factor on time to solution and consequently on power efficiency

