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Optimization on the Power Efficiency of GPU and 
Multicore Processing Element for SIMD Computing 



Energy aware SIMD/SPMD program design framework    

1. CUDA Processing Element (PE)  Power Feature Determination:  measurements (Flops/watt) ; 
2. PE Computation Capability: micro-architecture, language, compiler and characters  of the computation; 
3. Algorithm and Code Optimization Strategies: computer resources and power consumption.  
4. Verification and Validation: incremental procedure.  

GOAL:  
Importing 
hardware power 
parameters to 
software algorithm 
design, for 
improving the 
software energy 
efficiency.   



 National Instruments USB-6216 BNC data acquisition        
 
 
  
 
 
 
 

 
 The room was air-conditioned in 23◦C.  LabView 8.5 as oscilloscopes 

and analyzer for result data analysis.  
 

 Real time voltage and current from measurement readings; their 
product is the instant power at each sampling point. 

Measurement instruments and environment setup 

Fluke i30s / i310s  
current probes  

Yokogawa 700925 
voltage probe 



A GPU card is plugged in a PCI-Express slot on main 
board, it is mainly powered by 
    +12V power from PCI-Express pins 
    +3.3V power from PCI-Express pins 
    An additional +12V power directly from PSU 
(because sometimes the PCI-E power may not be 
enough to support the GPU’s high performance 
computation). 

 
   Auxiliary power is measured through the 
auxiliary power line;   

 
   A riser card to connect in between the PCI-
Express slot and the GPU plug, in order to measure 
the pins.   

Power Measurement of GPU 



CUDA PE Power Model 
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Abstract:  
Capturing the power characters of each component, building 
up power model,  estimating and validating the power 
consumption of CUDA PE in SIMD computations. 
 
Method: 
1. CPU power Measurement. From CPU socket on main 

board, one approximate way is to measure the CPU input 
current and voltage at the 8-pin power plug.  (Most of the 
onboard CPUs are powered only by this type of connector) 

2. GPU power measurement. (Suda paper) 
3. Memory and main board power estimation. we can make 

an approximation on its power by measuring the power 
change on the main board.   

    
 
 
 
Results: 
When the matrix size is greater than 1000, the power 
measurements and program time costs are fairly agree with 
each other. 
 
Environment: 
CPU: QX9650 (4cores)/Intel i7 (8cores); Fedora 8/ Ubundu 8; 
8GB/3GB DDR3 memory; NVIDIA8800 GTS/640M; 
8800GTS512.  



CPU-GPU PE Power Feature Determination 

Abstract:  
Experimental method for estimating component power to 
build up CUDA PE power model in SIMD computation. 
 
Method: 
 1.Measuring the power from each component of the PE; 
 
2.Find FLOPS/Watt ratio of the PE to this computation;  
  
3.Estimated execution time is the total workload FLOP to 
be computed divides by the computational speed that the 
CPU-GPU processing element can support;  
 
4.Estimated energy consumption for completing the 
program is the summation of products of the component 
powers  and the execution times.  
 
Results: 
The accuracy of the power model is within 5%  percentage 
error when problem size greater than a threshold of 4000. 
 
Environment: 
CUDA PE includes Intel QX9650 CPU/8GB DDR3 memory; 
GeForce 8800 GTS GPU; OS Fedora 8. 

Sample on Tesla 1060 

Power features of different PE configurations 



  CUDA/OMP Single CUDA device programming model  
 

CPU  

GPU0 Kernel #0   

  CPU 

Thread  
    #0 

Thread  
#2 

… … 

Thread #n-1 

Thread  
    #1 

Overheads between threads  

  CPU 

Core 0 
Core 1 Core 3 Core 2 

1. Setup thread/multi threads; 
2. Reserve an individual memory space for 

CUDA;  
3. Bond one thread to CUDA Kernel; 
4. Run CUDA kernel by transfer the defined 

structure; 
5. Run other thread as normal OMP threads.   
 

Run for other threads by OMP 

#include <omp.h> 

Init CUDA 

… 

Kernel () 

cudaGetDeviceProperties 

cudaSetDevice(i); 

cudaMemset 

cudaMemcpy2D 

… 

OMP Thread :  

struct thread_data { 

   int thread_id; 

   int gpu_id; 

   int num_gpus;  

   }; 

… 

      struct thread_data *my_data; 

      my_data = (struct thread_data *) threadid; 

      cpu_thread_id =  my_data->thread_id; 

      gpuid = my_data->gpu_id; 

      num_gpus = my_data ->num_gpus; 

Core 1 Core 2 Core 3 Core 4 

8B Cache Line 8B Cache Line 8B Cache Line 8B Cache Line 

64KB 3GHz  
L1 Cache 

32KB D-Cache 

64KB 3GHz 
L1 Cache 

32KB D-Cache 

64KB 3GHz 
L1 Cache 

32KB D-Cache 

64KB 3GHz 
L1 Cache 

32KB D-Cache 

8B Cache Line 8B Cache Line 

6MB L2 Cache 3GHz 6MB L2 Cache 3GHz 

FSB 
1.333GHz x 4 x 2B = 10.6GB/Sec  

1.333GHz 
Main Memory 8MB  

HDD3  

CUDA Kernel 
occupation  
in CPU  
core  

CUDA kernel Occupation  
in memory and PCI  
bandwidth 



  Power performance Improvement by numerical method optimization   

  

Abstract:  
1) Abstract a power model incorporates 
physical power constrains of hardware; 
2) Using block matrices to enhance PCI bus 
utilization to improve computation 
performance and save computation power.  
 
Method: 
 
 
 
Partition  smaller matrix-blocks whose size 
k fits the shared memory in one GPU block. 
Each GPU block can individually multiply 
matrix-blocks using its shared memory.  
 
Reduce the data transmission between 
GPU and main memory to 1/k, will 
significantly enhance the GPU 
performance and power efficiency. 
 
Results: Speedup the overall execution 
time of simple kernel by 10.81 times, save 
91% of energy used by the original kernel. 
  
Environment: Intel core i7 
(4cores/8threads); bundu8; 3G DDR3 
memory; GPU 8800GTS/640M.    

1

( ) ( ) ( ) ( )
N M

i i j

total GPU CPU mainboard

i j

P w P w P w P w


   



  CUDA / OMP multiple GPU device programming model  I  
 

Overheads between threads  

1. Setup thread/multiple threads; 
2. Reserve an individual memory space for CUDA;  
3. Bond two threads between two cores and two  
      CUDA devices, respectively; 
1. Run CUDA kernels by transferring the defined 

structure; 
2. Run other thread as normal OMP threads.   

 

#include <omp.h> 

Init CUDA 

… 

Kernel () 

cudaGetDeviceProperties 

cudaSetDevice(i); 

cudaMemset 

cudaMemcpy2D 

… 

CUDA_SAFE_CALL(cudaSetDevice(cpu_thread_id % 

num_gpus)); CUDA_SAFE_CALL(cudaGetDevice(&gpu_id)) 

… 

OMP Thread :  

struct thread_data { 

   int thread_id; 

   int gpu_id; 

   int num_gpus;  

   }; 

… 

      struct thread_data *my_data; 

      my_data = (struct thread_data *) threadid; 

      cpu_thread_id =  my_data->thread_id; 

      gpuid = my_data->gpu_id; 

      num_gpus = my_data ->num_gpus; 

Core 1 Core 2 Core 3 Core 4 

8B Cache Line 8B Cache Line 8B Cache Line 8B Cache Line 

64KB 3GHz  
L1 Cache 

32KB D-Cache 

64KB 3GHz 
L1 Cache 

32KB D-Cache 

64KB 3GHz 
L1 Cache 

32KB D-Cache 

64KB 3GHz 
L1 Cache 

32KB D-Cache 

8B Cache Line 8B Cache Line 

6MB L2 Cache 3GHz 6MB L2 Cache 3GHz 

FSB 
1.333GHz x 4 x 2B = 10.6GB/Sec  

1.333GHz 
Main Memory 8MB  

HDD3  

Run for other threads by OMP 

Kernel #1   Kernel #2   

  CPU 

Thread  
    #0 

Thread  
    #1 

… Thread #n 

  CPU 

Core 0 Core 1 Core 3 Core 2 

  … 
… … 

Power  
consuming  
components 



CUDA / OMP multiple CUDA device programming model II  
 

Overheads between threads  

1. Setup thread/multiple threads; 
2. Reserve an individual memory space for CUDA;  
3. Bond two threads to two CUDA devices, 

respectively; 
4. Run CUDA kernels by transferring the defined 

structure; 
5. Run other thread as normal OMP threads.   

 

#include <omp.h> 

Init CUDA 

… 

Kernel () 

cudaGetDeviceProperties 

cudaSetDevice(i); 

cudaMemset 

cudaMemcpy2D 

… 

CUDA_SAFE_CALL(cudaSetDevice(cpu_thread_id % 

num_gpus)); CUDA_SAFE_CALL(cudaGetDevice(&gpu_id)) 

… 

OMP Thread :  

struct thread_data { 

   int thread_id; 

   int gpu_id; 

   int num_gpus;  

   }; 

… 

      struct thread_data *my_data; 

      my_data = (struct thread_data *) threadid; 

      cpu_thread_id =  my_data->thread_id; 

      gpuid = my_data->gpu_id; 

      num_gpus = my_data ->num_gpus; 

Core 1 Core 2 Core 3 Core 4 

8B Cache Line 8B Cache Line 8B Cache Line 8B Cache Line 

64KB 3GHz  
L1 Cache 

32KB D-Cache 

64KB 3GHz 
L1 Cache 

32KB D-Cache 

64KB 3GHz 
L1 Cache 

32KB D-Cache 

64KB 3GHz 
L1 Cache 

32KB D-Cache 

8B Cache Line 8B Cache Line 

6MB L2 Cache 3GHz 6MB L2 Cache 3GHz 

FSB 
1.333GHz x 4 x 2B = 10.6GB/Sec  

1.333GHz 
Main Memory 8MB  

HDD3  

Power  
consuming  
components 

Kernel #0   Kernel #1   

  CPU 

Thread  
    #0 

Thread  
    #1 

Thread #2 

… … 

Thread #n 

  CPU 

Core 0 Core 1 Core 3 Core 2 

Run for other threads by OMP 



 Parallel GPU and process synchronization   

  

Abstract:  
Parallel GPU approach with signal 
synchronization mechanism design;  
Multithreading GPU kernel control 
method to save CPU core numbers. 
 
Method: 
Partition matrix A into sub-matrices for 
each GPU device;   
  
Create multithreads on CPU side to 
instruct each CUDA kernel;  
 
Design synchronization signal to 
synchronize each CUDA kernel. 
 
Results: 
Parallel GPUs can achieve 71% speedup 
in Kernel time, 21.4% in CPU time; 
Power consumption  decreased 22%. 
 
Environment: 
CUDA PE includes Intel QX9650 
CPU/8GB DDR3 memory; GeForce 8800 
GTS 512; OS Fedora 8.  



Removing CUDA Overhead  

Abstract:  
Remove CUDA overhead by calling C 
function to compute small size workload, 
save the time and energy cost by CUDA 
overhead .   
 
Method: 
A CUDA overhead for kernel initialization, 
memory copy and kernel launch before 
start real kernel computation. A threshold 
can be determined by experiment by 
analysis as following: 
 
 
  
 
 
 
 
 
Environment: 
CUDA PE includes Intel QX9650 CPU/8GB 
DDR3 memory; GeForce 8800 GTS GPU; 
OS Fedora  8.  

CUDA computation  overhead when workload is mall:  
(a) matrix size n=100;  
(b) matrix size=500;  
(c) Energy cost comparison of 1 to 4 cores, one-GPU PE and two 
GPU PE;  
(d) Computing time  comparison of 1 to 4 cores, one-GPU PE and 
two-GPU PE. 

ker

      

C function will be slected when matrix size 

less than  where .
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CPU sharing GPU workload  

Abstract:  
Determine the load to be shared by CPU based on 
the computation character and performance 
estimation. 
 
Method: 
  
 
 
  
 
 
 
 
 
Results: 
An optimized minimum energy value can be 
obtained when CPU (one core)  workload share is 
around 0.83%, the maximum energy saving can 
reach around 1.3%. ( for devices listed below) 
 
Environment: 
CUDA PE includes Intel QX9650 CPU/8GB DDR3 
memory; GeForce 8800 GTS GPU; OS Fedora  8.  
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 CPU Frequency Scaling  

Abstract:  
Design a CPU frequency scaling method to save CUDA PE 
power without decreasing the computation performance.  
 
Method: 
CPU frequency should match CUDA kernel calls in order to 
not decrease GPU computation speed. 
 
CPU frequency can be scaled down without compromising 
with the PE’s performance however to save the CPU’s 
power.  
 
A rough estimation for the minimum CPU frequency should 
be satisfy 
   
 
 
Results: 
An optimized minimum energy value can be obtained when 
CPU runs in low frequency (2GHz), comparing with CPU in 
3GHz the total PE energy saving can reach 12.43% in 
average when matrix size increases from 500 to 5000, 
without computation speed decrease.  
 
Environment: 
CUDA PE includes Intel QX9650 CPU/8GB DDR3 memory; 
GeForce 8800 GTS GPU; OS Fedora  8.  

 (most of the cases)

 (if )

CPU CPI

CPU GPUMemory CPI GPUMemory

F F

F F F F



 



CUDA / MPI load scheduling for energy aware computing 

Abstract:  
With C/CUDA/MPI on Multi-core and GPU clusters, partitioning and scheduling  SPMD and SIMD program  to 
Multi-core CPU and GPU cooperative architectures .   
MPI works as data distributing mechanism between the GPU nodes and CUDA as the computing engine. 
Method: 
Multi complier , MPI cluster computing algorithms and communication strategies are involved.  
Environment: 
CUDA PE includes Intel QX9650 CPU/8GB DDR3 memory; GeForce 8800 GTS GPU; OS Fedora  8.  



Energy parameters 

GPU power model 

H/S power performance factors for global Optimization 



Definition Description 

Problem Space  The multiplication for variable length of dense matrices and ,  with 
multicore and GPU(s) device. 
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Hardware  
Components 

Selection and employment of the number of CPUs and GPUs for 
solving the problem. 
 

Component 
Configurations 

Frequency scaling on CPU and/or GPU components. 

 
Optimization 
Algorithms 

The optimization algorithm designed and implemented for solving 
the problem that available for optimizer to choose. Including 
parallelization scheme and workload scheduling.  
             

Objective Functions  
  

The objective function which measure the utility of the solution 
candidates to find the minimization.  
 

Optimal Solution set 
  

Determine the number of components to be included in the final 
solution so that the total time is less than or equal to a given limit and 
the total energy is as minimum as possible. 

Scenario of global Energy Optimization for SIMD Computing 

Definitions  
of 

global 
optimization 

model 



The energy consumption 
on computing the 
multiplications of small 
matrices of size 100 to 
500 using one multicore 
with 4 cores / 8 threads 
(Intel i7) and one GPU 
(Tesla 2050C), with simple 
Kernel and block matrix, 
respectively.  

Global optimizations  

Numerical approach + Parallel GPU + Load scheduling 

Remove CUDA overhead + Parallel GPU + Load scheduling 

The energy 
consumption on the 
same problems using 
one to four cores 
(QX9650), one-CPU-
one-GPU(8800GTS) 
CUDA PE and one-
CPU-two-
GPU(8800GTS) CUDA 
PE, respectively.  



Conclusion 
 

1. An experimental power modeling and estimation method on GPU and multicore structures 
has been illustrated; 

2. Power parameters are captured by measurements on each component in a CUDA PE,  thus 
power features to  the SIMD program can then be analyzed and obtained; 

3. Five energy aware algorithm design methods have been introduced; 
4. A global energy optimization model is created for CUDA PE by a four-tuple definition that 

specifies the problem space, the objective functions, optimization candidates and optimal 
solution set, the procedure to find optimal energy solution is described based on it.  

5. The global energy optimization model is validated by examining C/CUDA programs 
executing on real systems. 

 
Future work 
 

1. Energy estimation method can be refined to enhance its precision by including more 
components;  

2. Power parameters can be tuned for obtaining the minimum energy consumption for given 
problems;  

3. Global optimization methods can be used on managing energy aware software design 
constrains in order to reach the best energy performance among all possible alternatives. 
 

Conclusion and future work 


