
Da-Qi Ren and Reiji Suda
Department of Computer Science

Optimization on the Power Efficiency of GPU and
Multicore Processing Element for SIMD Computing

Energy aware SIMD/SPMD program design framework

1. CUDA Processing Element (PE) Power Feature Determination: measurements (Flops/watt) ;
2. PE Computation Capability: micro-architecture, language, compiler and characters of the computation;
3. Algorithm and Code Optimization Strategies: computer resources and power consumption.
4. Verification and Validation: incremental procedure.

GOAL:
Importing
hardware power
parameters to
software algorithm
design, for
improving the
software energy
efficiency.

 National Instruments USB-6216 BNC data acquisition

 The room was air-conditioned in 23◦C. LabView 8.5 as oscilloscopes

and analyzer for result data analysis.

 Real time voltage and current from measurement readings; their
product is the instant power at each sampling point.

Measurement instruments and environment setup

Fluke i30s / i310s
current probes

Yokogawa 700925
voltage probe

A GPU card is plugged in a PCI-Express slot on main
board, it is mainly powered by
 +12V power from PCI-Express pins
 +3.3V power from PCI-Express pins
 An additional +12V power directly from PSU
(because sometimes the PCI-E power may not be
enough to support the GPU’s high performance
computation).

 Auxiliary power is measured through the
auxiliary power line;

 A riser card to connect in between the PCI-
Express slot and the GPU plug, in order to measure
the pins.

Power Measurement of GPU

CUDA PE Power Model

1

() () () ()
N M

i i j

total GPU CPU mainboard

i j

P w P w P w P w

Abstract:
Capturing the power characters of each component, building
up power model, estimating and validating the power
consumption of CUDA PE in SIMD computations.

Method:
1. CPU power Measurement. From CPU socket on main

board, one approximate way is to measure the CPU input
current and voltage at the 8-pin power plug. (Most of the
onboard CPUs are powered only by this type of connector)

2. GPU power measurement. (Suda paper)
3. Memory and main board power estimation. we can make

an approximation on its power by measuring the power
change on the main board.

Results:
When the matrix size is greater than 1000, the power
measurements and program time costs are fairly agree with
each other.

Environment:
CPU: QX9650 (4cores)/Intel i7 (8cores); Fedora 8/ Ubundu 8;
8GB/3GB DDR3 memory; NVIDIA8800 GTS/640M;
8800GTS512.

CPU-GPU PE Power Feature Determination

Abstract:
Experimental method for estimating component power to
build up CUDA PE power model in SIMD computation.

Method:
 1.Measuring the power from each component of the PE;

2.Find FLOPS/Watt ratio of the PE to this computation;

3.Estimated execution time is the total workload FLOP to
be computed divides by the computational speed that the
CPU-GPU processing element can support;

4.Estimated energy consumption for completing the
program is the summation of products of the component
powers and the execution times.

Results:
The accuracy of the power model is within 5% percentage
error when problem size greater than a threshold of 4000.

Environment:
CUDA PE includes Intel QX9650 CPU/8GB DDR3 memory;
GeForce 8800 GTS GPU; OS Fedora 8.

Sample on Tesla 1060

Power features of different PE configurations

 CUDA/OMP Single CUDA device programming model

CPU

GPU0 Kernel #0

 CPU

Thread
 #0

Thread
#2

… …

Thread #n-1

Thread
 #1

Overheads between threads

 CPU

Core 0
Core 1 Core 3 Core 2

1. Setup thread/multi threads;
2. Reserve an individual memory space for

CUDA;
3. Bond one thread to CUDA Kernel;
4. Run CUDA kernel by transfer the defined

structure;
5. Run other thread as normal OMP threads.

Run for other threads by OMP

#include <omp.h>

Init CUDA

…

Kernel ()

cudaGetDeviceProperties

cudaSetDevice(i);

cudaMemset

cudaMemcpy2D

…

OMP Thread :

struct thread_data {

 int thread_id;

 int gpu_id;

 int num_gpus;

 };

…

 struct thread_data *my_data;

 my_data = (struct thread_data *) threadid;

 cpu_thread_id = my_data->thread_id;

 gpuid = my_data->gpu_id;

 num_gpus = my_data ->num_gpus;

Core 1 Core 2 Core 3 Core 4

8B Cache Line 8B Cache Line 8B Cache Line 8B Cache Line

64KB 3GHz
L1 Cache

32KB D-Cache

64KB 3GHz
L1 Cache

32KB D-Cache

64KB 3GHz
L1 Cache

32KB D-Cache

64KB 3GHz
L1 Cache

32KB D-Cache

8B Cache Line 8B Cache Line

6MB L2 Cache 3GHz 6MB L2 Cache 3GHz

FSB
1.333GHz x 4 x 2B = 10.6GB/Sec

1.333GHz
Main Memory 8MB

HDD3

CUDA Kernel
occupation
in CPU
core

CUDA kernel Occupation
in memory and PCI
bandwidth

 Power performance Improvement by numerical method optimization

Abstract:
1) Abstract a power model incorporates
physical power constrains of hardware;
2) Using block matrices to enhance PCI bus
utilization to improve computation
performance and save computation power.

Method:

Partition smaller matrix-blocks whose size
k fits the shared memory in one GPU block.
Each GPU block can individually multiply
matrix-blocks using its shared memory.

Reduce the data transmission between
GPU and main memory to 1/k, will
significantly enhance the GPU
performance and power efficiency.

Results: Speedup the overall execution
time of simple kernel by 10.81 times, save
91% of energy used by the original kernel.

Environment: Intel core i7
(4cores/8threads); bundu8; 3G DDR3
memory; GPU 8800GTS/640M.

1

() () () ()
N M

i i j

total GPU CPU mainboard

i j

P w P w P w P w

 CUDA / OMP multiple GPU device programming model I

Overheads between threads

1. Setup thread/multiple threads;
2. Reserve an individual memory space for CUDA;
3. Bond two threads between two cores and two
 CUDA devices, respectively;
1. Run CUDA kernels by transferring the defined

structure;
2. Run other thread as normal OMP threads.

#include <omp.h>

Init CUDA

…

Kernel ()

cudaGetDeviceProperties

cudaSetDevice(i);

cudaMemset

cudaMemcpy2D

…

CUDA_SAFE_CALL(cudaSetDevice(cpu_thread_id %

num_gpus)); CUDA_SAFE_CALL(cudaGetDevice(&gpu_id))

…

OMP Thread :

struct thread_data {

 int thread_id;

 int gpu_id;

 int num_gpus;

 };

…

 struct thread_data *my_data;

 my_data = (struct thread_data *) threadid;

 cpu_thread_id = my_data->thread_id;

 gpuid = my_data->gpu_id;

 num_gpus = my_data ->num_gpus;

Core 1 Core 2 Core 3 Core 4

8B Cache Line 8B Cache Line 8B Cache Line 8B Cache Line

64KB 3GHz
L1 Cache

32KB D-Cache

64KB 3GHz
L1 Cache

32KB D-Cache

64KB 3GHz
L1 Cache

32KB D-Cache

64KB 3GHz
L1 Cache

32KB D-Cache

8B Cache Line 8B Cache Line

6MB L2 Cache 3GHz 6MB L2 Cache 3GHz

FSB
1.333GHz x 4 x 2B = 10.6GB/Sec

1.333GHz
Main Memory 8MB

HDD3

Run for other threads by OMP

Kernel #1 Kernel #2

 CPU

Thread
 #0

Thread
 #1

… Thread #n

 CPU

Core 0 Core 1 Core 3 Core 2

 …
… …

Power
consuming
components

CUDA / OMP multiple CUDA device programming model II

Overheads between threads

1. Setup thread/multiple threads;
2. Reserve an individual memory space for CUDA;
3. Bond two threads to two CUDA devices,

respectively;
4. Run CUDA kernels by transferring the defined

structure;
5. Run other thread as normal OMP threads.

#include <omp.h>

Init CUDA

…

Kernel ()

cudaGetDeviceProperties

cudaSetDevice(i);

cudaMemset

cudaMemcpy2D

…

CUDA_SAFE_CALL(cudaSetDevice(cpu_thread_id %

num_gpus)); CUDA_SAFE_CALL(cudaGetDevice(&gpu_id))

…

OMP Thread :

struct thread_data {

 int thread_id;

 int gpu_id;

 int num_gpus;

 };

…

 struct thread_data *my_data;

 my_data = (struct thread_data *) threadid;

 cpu_thread_id = my_data->thread_id;

 gpuid = my_data->gpu_id;

 num_gpus = my_data ->num_gpus;

Core 1 Core 2 Core 3 Core 4

8B Cache Line 8B Cache Line 8B Cache Line 8B Cache Line

64KB 3GHz
L1 Cache

32KB D-Cache

64KB 3GHz
L1 Cache

32KB D-Cache

64KB 3GHz
L1 Cache

32KB D-Cache

64KB 3GHz
L1 Cache

32KB D-Cache

8B Cache Line 8B Cache Line

6MB L2 Cache 3GHz 6MB L2 Cache 3GHz

FSB
1.333GHz x 4 x 2B = 10.6GB/Sec

1.333GHz
Main Memory 8MB

HDD3

Power
consuming
components

Kernel #0 Kernel #1

 CPU

Thread
 #0

Thread
 #1

Thread #2

… …

Thread #n

 CPU

Core 0 Core 1 Core 3 Core 2

Run for other threads by OMP

 Parallel GPU and process synchronization

Abstract:
Parallel GPU approach with signal
synchronization mechanism design;
Multithreading GPU kernel control
method to save CPU core numbers.

Method:
Partition matrix A into sub-matrices for
each GPU device;

Create multithreads on CPU side to
instruct each CUDA kernel;

Design synchronization signal to
synchronize each CUDA kernel.

Results:
Parallel GPUs can achieve 71% speedup
in Kernel time, 21.4% in CPU time;
Power consumption decreased 22%.

Environment:
CUDA PE includes Intel QX9650
CPU/8GB DDR3 memory; GeForce 8800
GTS 512; OS Fedora 8.

Removing CUDA Overhead

Abstract:
Remove CUDA overhead by calling C
function to compute small size workload,
save the time and energy cost by CUDA
overhead .

Method:
A CUDA overhead for kernel initialization,
memory copy and kernel launch before
start real kernel computation. A threshold
can be determined by experiment by
analysis as following:

Environment:
CUDA PE includes Intel QX9650 CPU/8GB
DDR3 memory; GeForce 8800 GTS GPU;
OS Fedora 8.

CUDA computation overhead when workload is mall:
(a) matrix size n=100;
(b) matrix size=500;
(c) Energy cost comparison of 1 to 4 cores, one-GPU PE and two
GPU PE;
(d) Computing time comparison of 1 to 4 cores, one-GPU PE and
two-GPU PE.

ker

C function will be slected when matrix size

less than where .

k k k k

CPU GPU GPUoverhead CUDA nel

k k

CPU CPU CPU

k k

GPU CPU GPU PE GPU

k k

CPU GPU

T T T T

E P T

E P T

k E E

(a) (b)

(c) (d)

CPU sharing GPU workload

Abstract:
Determine the load to be shared by CPU based on
the computation character and performance
estimation.

Method:

Results:
An optimized minimum energy value can be
obtained when CPU (one core) workload share is
around 0.83%, the maximum energy saving can
reach around 1.3%. (for devices listed below)

Environment:
CUDA PE includes Intel QX9650 CPU/8GB DDR3
memory; GeForce 8800 GTS GPU; OS Fedora 8.

 ,

max(,)

;

CPU GPU
CPU GPU

CPU GPU

CPU GPU

GPU
CPU CPU GPU GPU GPU

GPU

W W
T T

s s

T T T

W
E T P E T P

f

 min min min

() (+)

CPU GPU

CPU GPU CPU GPU GPU

E E E

E E E T P T P

 CPU Frequency Scaling

Abstract:
Design a CPU frequency scaling method to save CUDA PE
power without decreasing the computation performance.

Method:
CPU frequency should match CUDA kernel calls in order to
not decrease GPU computation speed.

CPU frequency can be scaled down without compromising
with the PE’s performance however to save the CPU’s
power.

A rough estimation for the minimum CPU frequency should
be satisfy

Results:
An optimized minimum energy value can be obtained when
CPU runs in low frequency (2GHz), comparing with CPU in
3GHz the total PE energy saving can reach 12.43% in
average when matrix size increases from 500 to 5000,
without computation speed decrease.

Environment:
CUDA PE includes Intel QX9650 CPU/8GB DDR3 memory;
GeForce 8800 GTS GPU; OS Fedora 8.

 (most of the cases)

 (if)

CPU CPI

CPU GPUMemory CPI GPUMemory

F F

F F F F

CUDA / MPI load scheduling for energy aware computing

Abstract:
With C/CUDA/MPI on Multi-core and GPU clusters, partitioning and scheduling SPMD and SIMD program to
Multi-core CPU and GPU cooperative architectures .
MPI works as data distributing mechanism between the GPU nodes and CUDA as the computing engine.
Method:
Multi complier , MPI cluster computing algorithms and communication strategies are involved.
Environment:
CUDA PE includes Intel QX9650 CPU/8GB DDR3 memory; GeForce 8800 GTS GPU; OS Fedora 8.

Energy parameters

GPU power model

H/S power performance factors for global Optimization

Definition Description

Problem Space The multiplication for variable length of dense matrices and , with
multicore and GPU(s) device.

O
p

ti
m

iz
at

io
n

C

an
d

id
at

e
s

Hardware
Components

Selection and employment of the number of CPUs and GPUs for
solving the problem.

Component
Configurations

Frequency scaling on CPU and/or GPU components.

Optimization
Algorithms

The optimization algorithm designed and implemented for solving
the problem that available for optimizer to choose. Including
parallelization scheme and workload scheduling.

Objective Functions

The objective function which measure the utility of the solution
candidates to find the minimization.

Optimal Solution set

Determine the number of components to be included in the final
solution so that the total time is less than or equal to a given limit and
the total energy is as minimum as possible.

Scenario of global Energy Optimization for SIMD Computing

Definitions
of

global
optimization

model

The energy consumption
on computing the
multiplications of small
matrices of size 100 to
500 using one multicore
with 4 cores / 8 threads
(Intel i7) and one GPU
(Tesla 2050C), with simple
Kernel and block matrix,
respectively.

Global optimizations

Numerical approach + Parallel GPU + Load scheduling

Remove CUDA overhead + Parallel GPU + Load scheduling

The energy
consumption on the
same problems using
one to four cores
(QX9650), one-CPU-
one-GPU(8800GTS)
CUDA PE and one-
CPU-two-
GPU(8800GTS) CUDA
PE, respectively.

Conclusion

1. An experimental power modeling and estimation method on GPU and multicore structures
has been illustrated;

2. Power parameters are captured by measurements on each component in a CUDA PE, thus
power features to the SIMD program can then be analyzed and obtained;

3. Five energy aware algorithm design methods have been introduced;
4. A global energy optimization model is created for CUDA PE by a four-tuple definition that

specifies the problem space, the objective functions, optimization candidates and optimal
solution set, the procedure to find optimal energy solution is described based on it.

5. The global energy optimization model is validated by examining C/CUDA programs
executing on real systems.

Future work

1. Energy estimation method can be refined to enhance its precision by including more
components;

2. Power parameters can be tuned for obtaining the minimum energy consumption for given
problems;

3. Global optimization methods can be used on managing energy aware software design
constrains in order to reach the best energy performance among all possible alternatives.

Conclusion and future work

