Optimization on the Power Efficiency of GPU and
Multicore Processing Element for SIMD Computing

Da-Qi Ren and Reiji Suda
Department of Computer Science

(% THE UNIVERSITY OF TOKYO

Energy aware SIMD/SPMD program design framework

ULP-HPC Algorithm Design _ ULP-HPC Algorithm
and Optimization Verification and Validation

[Algorithm Optimization and Coding Optimization Strategies !
|
I Datastructure | Numerical solution optimization Domain Partition and GOAL:
I optimization in terms of power saving Parallelism I Importing
|
: Dynamic Frequency Power aware I hardware power
Scaling Load Scheduling ; parameters to

I_ - design, for
/ Costs improving the

\
PE Power o — _t — | Computation
Features _—— /7 Capabilities
\

Computational

I

! [powerModel of the I Capabilities of 11 | Memory software energy
: Multiprocessing System I : Processing Element || Operations | efficiency.

f | I |I Data :
| Power Feaftures of Each | Computation Compiler Il | Movements |
| Processing Elements : | Characteristics Technique 11 |
[f | | I Other system power I
I Power Measurement | | Hardware \ consuming Components /

on components I\ Micro-architecture N . o _ -

\ /7 N /7

-_—"ees e e e - . . — s o e e e e e o e

CUDA Processing Element (PE) Power Feature Determination: measurements (Flops/watt) ;

PE Computation Capability: micro-architecture, language, compiler and characters of the computation;
Algorithm and Code Optimization Strategies: computer resources and power consumption.
Verification and Validation: incremental procedure.

PWONPR

Measurement instruments and environment setup

B National Instruments USB-6216 BNC data acquisition s—m)

Fluke i30s /i310s Yokogawa 700925
current probes voltage pro :
o
&
[
Som
5
5
8
I
B The room was air-conditioned in 23°C. LabView 8.5 as oscilloscopes S

MR
=N

and analyzer for result data analysis.

B Real time voltage and current from measurement readings; their
product is the instant power at each sampling point.

CPU fan+12V . PCI+3.3V
Main |z GPU

Board I_x—n PCI+12V ._'_ . .

E .I."- T b I|

ﬁ \:_' = _.-‘ :5'-£

CPU Data Signals 3 NEe e
i o) a w[[J]es

CPU +12V

-~ KA

Main board +3.3\
PsSU Main board +5V
Main board +12V

NI USB-E212/6216

AUX +12V

Power Measurement of GPU

A GPU card is plugged in a PCI-Express slot on main
board, it is mainly powered by

O +12V power from PCl-Express pins

O +3.3V power from PCI-Express pins

O An additional +12V power directly from PSU
(because sometimes the PCI-E power may not be 4
enough to support the GPU’s high performance
computation).

Power Supply from PCl-Express bus
+3.3V and +12V, Maximum input power is 75W

Auxiliary Power Supply +12V

PCl-Express 16x Connector Pin-Out

Pin Side B Connector Side A Connector

O Auxiliary power is measured through the o e e
. . 1 p12v +12 voit power PRSMT#1 |Hot plug presence detect

aUXIIIary power |Ine; 2 -12v +12 volt power +12v +12 volt power

3 |RSVD Resenved =12y +12 volt power
O Ariser card to connect in between the PCI- M L = 0

. 5 |SMCLK SMBus clock JTAGZ TCK

Express slot and the GPU plug, in order to measure i Teuoar |susus o Sl b
the pins. 7 |GND Ground JTAG4 TDO

8 3.3v +3.3 volt power LUTAGS TMS

9 |JTAGH +TRST# +3.3v +3.3 volt power

10 |3.3Vaux 3.3vvolt power +3.3v +3.3 volt power

11 |WAKE®R Link Reactivation PWRGD Power Good

O (I O

CUDA PE Power Model

Thereal computation =, o |
problems, Numerical w
methodologies. O?Mn |
)
High Level Code [a5 ding 1
(€ CUDA etc) | m
I BRI

I Intermediate Code

I

I Object Code Memory operations [CUDA Kernel Object Code I

1 1

e

Executable I [Executable

Operating System

CPU Power Consumption Memory Power Consumption GPU Power Consumptior

Ecpy = Foplepy E senory = Frsry by | Ecpy = Fepylopy

Em, = P +EGPL' +Ed=: = T(PCPL +PGP|'.' +Pm)

PCl+3.3
CPUfan+12V | paoe - % GPU

M\ﬂ": PCI+1pV

CPU Memory
L erl +12v = Z

o N
Main board +3.3V

PSU Main board +5V
Main board +12V

Fan

AUX+12V

Abstract:

Capturing the power characters of each component, building
up power model, estimating and validating the power
consumption of CUDA PE in SIMD computations.

Method:
CPU power Measurement. From CPU socket on main
board, one approximate way is to measure the CPU input
current and voltage at the 8-pin power plug. (Most of the
onboard CPUs are powered only by this type of connector)

2. GPU power measurement. (Suda paper)

3. Memory and main board power estimation. we can make
an approximation on its power by measuring the power
change on the main board.

N . . M .
Ptotal (W) = Z I:)GIPU (WI) + Z I:)CPU (Wj) + F)mainboard (W)
Y f

Results:

When the matrix size is greater than 1000, the power
measurements and program time costs are fairly agree with
each other.

Environment:
CPU: QX9650 (4cores)/Intel i7 (8cores); Fedora 8/ Ubundu 8;
8GB/3GB DDR3 memory; NVIDIA8800 GTS/640M;
8800GTS512.

w
v
=)

CPU and GPU AUX Input Powers (w)
o 3 & 3 b 8
o o o o o o

=

CPU-GPU PE Power Feature Determination

700
GPU AUX Input
P SCEEE PPCEEPPEREER R S 600
E Total Main BoardInput Powers
2 500
i
40 -
GPU 8pin Input 13 Main Board 12v Input
— P =
GPU 6pin Input -
.5200
CPU Input 2
100 I Main Board 5v Input
T L :
o Main Board 3v Input
0 1 2 3 q S 6 7 8 0 1 2 3 4 S 6 7 8
Kernel Execution Time (s) Kernel Execution Time (s)
Sample on Tesla 1060
Parameter Description Power | CPU
PE Speed iFeature{ Freq
Computing | QX9650 |Single CPU Gflops iMflops| GHz
Eletpents NV8800 [CPU+GPU /Watt
Options CPU+2GPU | QX9650 | 50.1 | 835 | 2
Tesla2050 [Single CPU NV8800 50.1 73.6 3
Inteli7 CPU+GPU 76.5 | 76.9 2
Computing | OX9650 | CPULGPU 803 | 751 | 3
component | NV8800 | CPU share load| @X9650 | 512 1 757 | 2
configuration CPU+2GPU | V8800
CPU share load| (CPU 5321719 | 3
CPUEreq Scal igfrf'lfoad) 1358 | 1932 |1.73
Tesla 2050 | CPU Freq Scal ! : ‘ :
Intel i7 Tesla 2050
lock . . .
Software | GX9650 |RM Overhiead | Co¢ 1358 1 186.4 12.86
Opti NV8800 | Matrix)
ons Block Matrix ["nteli7 588 1873 11.73
Tesla2050 [RM Overhead | Tesla 2050
mteli7 [Biodchia 58.8 | 832 |2.86

Power features of different PE configurations

Abstract:
Experimental method for estimating component power to
build up CUDA PE power model in SIMD computation.

Method:
1.Measuring the power from each component of the PE;

2.Find FLOP?/Watt ratio of the PE to this computation;

3.Estimated execution time is the total workload FLOP to
be computed divides by the computational speed that the
CPU-GPU processing element can support;

4.Estimated " energy consumption for completing the
program is the summation of products of the component
powers and the execution times.

Results:
The accuracy of the power model is within 5% percentage
error when problem size greater than a threshold of 4000.

Environment:
CUDA PE includes Intel QX9650 CPU/8GB DDR3 memory;
GeForce 8800 GTS GPU; OS Fedora 8.

CUDA/OMP Single CUDA device programming model

Corel Core 2 Core3 Core 4
_!.B Cache Line 8B Cache Line 8B Cache Line 8B Cache Line
CUDA Kernel | 64KB 3GHz 64KB 3GHz 64KB 3GHz 64KB 3GHz
. L1 Cache L1 Cache L1 Cache L1 Cache
occupation 32KB D-Cache 32KB D-Cache 32KB D-Cache 32KB D-Cache
. —
in CPU e - - -
8B Cacl e Line 8B Cache Line
core
6MB L2 Cache 3GHz 6MB L2 Cache 3GHz
] Fs?
1.333GHz x 4 x 2B.- 10.6GB/Sec
d_é—
1.333GHz
Main Memory ?VIB
HDD3
\ CUDA kernel Occupation
in memory and PCI
GPUO .
Kernel #0 bandwidth
Thread
#O Thread #n-1
’ L\ n
CPU : eee eoe 1
R _ .
CPU A Thread Thread .-~ 2.
X
| #1 i ‘_#L"__—
' — B
CPU ' | 3.
= 4,
carel Core2 Core3
Core 0
5.

E Overheads between thread

s
Run for other threads by OMP

#include <omp.h>
Init CUDA

Kernel ()
cudaGetDeviceProperties
cudaSetDevice(i);
cudaMemset
cudaMemcpy2D

OMP Thread :
struct thread_data {
int thread_id;
int gpu_id;
int num_gpus;

)

struct thread_data *my_data;

my_data = (struct thread_data *) threadid;
cpu_thread_id = my_data->thread_id;
gpuid = my_data->gpu_id;

num_gpus = my_data ->num_gpus;

Setup thread/multi threads;

Reserve an individual memory space for
CUDA;

Bond one thread to CUDA Kernel;

Run CUDA kernel by transfer the defined
structure;

Run other thread as normal OMP threads.

Power performance Improvement by numerical method optimization

C=AB A, B, Cepr"™® Abstract:
If the matrices A, B are not of type 2" x 2" we fill the missing rows and calumns with zeros. ' .
We partition A, B and C into equally sized block matrices 1) AbStraCt a pOWGI" mOdel InCOI‘porates
A=A Azl p_ [Bu Bl o Cii Cip physical power constrains of hardware;
A?,l A?‘Q B2.l B?,Q CZ.I C?,2

2) Using block matrices to enhance PCl bus
A.;. B, C;, € R ! utilization to improve computation

then performance and save computation power.
Cii=ABi; +A:By,

Ci2=A1Bi2+A 1By,

with

GPU Power

Main Board Power

Coi = A3 1Byg + AyoByy Method:
Coz = Ay1B1s + ApsBsy» N _ y _
1 1
340 11] 180 Time CPU Power Chart of Simple CUDA Kernel Ptotal (W) = Zl: PGPU (W) + Z PCPU (WJ) + Pmainboard (W)
310 Time |Tipgd I Simple 160 Start —CPU Power chart of enhance CUDA kernel 1=]
| T

w2 o | s [N * j
- [] 120 ! 50.019uh || Kernel Partition smaller matrix-blocks whose size

(] T H Area2 . .
. Shemr ““\ b g 7 Enerey : k fits the shared memory in one GPU block.
. gl i e g™ o : Each GPU block can individually multiply

'] nhance: T . . .
{ 1| KernelEnd §, A * v l v | matrix-blocks using its shared memory.
160 GPU power chart of simple CUDA kernel \=3.e6r§th 40 | i) L
130 ——GPU power chart of enhanced CUDA kernel ! 20 : [: '
o . | LKemelEnd I Reduce the data transmission between
s O T GPU and main memory to 1/k, will
_ ; significantly enhance the GPU

50 Simple Enhance ..
Emerey e Algorithm Algorithm performance and power efficiency.
200 | ,=0.0402wh | ::;:EI
20 A - —— - CPU Energy Consumption 0.24 wh 0.019 wh .

T sz — Results: Speedup the overall execution
200 [Energy > GPU Energy Consumption 0.654 wh 0.055 wh . . .
=0.47wh | . | time of simple kernel by 10.81 times, save

. Ty p W Main Board (Main Memory) 0.47 wh 0.0402 wh o L.

160 1 "m‘ i Energy Consumption 91% of energy used by the Orlglnal kernel.

'| Kernel End .
a0 —Main board power chart of simple CUDA kernel Overall Time Consumption 7.5s 0.6s
i:: ——Main board power chart of enhanced CUDA kernel Overa" Energy Consumption 1364 Wh 0.1142 Wh Environment: |nte| core i7

) ° * Time = oo (4cores/8threads); bundu8; 3G DDR3

memory; GPU 8800GTS/640M.

CUDA / OMP multiple GPU device programming model |

r Core l Core 2 Core3 Core 4
8B Cache Line 8B Cache Line 8B Cache Line 8B Cache Line
64KB 3GHz 64KB 3GHz 64KB 3GHz 64KB 3GHz
L1 Cache L1 Cache L1 Cache L1 Cache

32KB D-Cache

32KB D-Cache

32KB D-Cache

32KB D-Cache

8B Cicl e Line

Power | 8B Cache Line
components [FsB
1.333GHz x 4 x 2B= 10.6GB,Sec
1.333GHz
Main Memory 8MB
HDD3
Kernel #1 || Kernel #2
Thread Thread
#o #i
CPU I H H E hread #n
P = [XX] [X]
A
! i ;
CPU r |

E Overheads between threads

Core0 Corel

Core2 Core?

N

Run for other threads by OMP

#include <omp.h>
Init CUDA

Kernel 0
cudaGetDeviceProperties
cudaSetDevice(i);
cudaMemset
cudaMemcpy2D

CUDA_SAFE_CALL(cudaSetDevice(cpu_thread_id %
num_gpus)); CUDA_SAFE_CALL(cudaGetDevice(&gpu_id))

OMP Thread :
struct thread_data {
int thread_id;
int gpu_id;
int num_gpus;

b

struct thread_data *my_data;

my_data = (struct thread_data *) threadid;
cpu_thread_id = my_data->thread_id;
gpuid = my_data->gpu_id;

num_gpus = my_data ->num_gpus;

2.

Setup thread/multiple threads;

Reserve an individual memory space for CUDA;
Bond two threads between two cores and two
CUDA devices, respectively;

Run CUDA kernels by transferring the defined
structure;

Run other thread as normal OMP threads.

CUDA / OMP multiple CUDA device programming model Il

32KB D-Cache 32KB D-Cache

|

32KB D-Cache

Core 1l Core 2 Core 3 Core 4
B Cache Line 8B Cache Line 8B Cache Line 8B Cache Line
64KB 3GHz 64KB 3GHz 64KB 3GHz 64KB 3GHz
L1 Cache L1 Cache L1 Cache L1 Cache

32KB D-Cache

Power 8B Cacl e Line 8B Cache Line
components |] FsB
1.333GHz x 4 x 2B= 10.6Gb,'Sec
(o)
|_ 1.333GHz
Main Memory 8MB
| HDD3
Kernel #0 | | Kernel #1
Thread /" Thread
#0 #1 Thread #n
n Ly L I
CPU ' : { q : eee oo
/:\ Threaa #2 7
I ¥ ‘——"'>
CPU |

Core0 Clarel Core2 Core?

E Overheads between threads Run for other threads by OMP

N

#include <omp.h>
Init CUDA

Kernel ()
cudaGetDeviceProperties
cudaSetDevice(i);
cudaMemset
cudaMemcpy2D

CUDA_SAFE_CALL(cudaSetDevice(cpu_thread_id %
num_gpus)); CUDA_SAFE_CALL(cudaGetDevice(&gpu_id))

OMP Thread :
struct thread_data {
int thread_id;
int gpu_id;
int num_gpus;

’

struct thread_data *my_data;

my_data = (struct thread_data *) threadid;
cpu_thread_id = my_data->thread_id;
gpuid = my_data->gpu_id;

num_gpus = my_data ->num_gpus;

Setup thread/multiple threads;

Reserve an individual memory space for CUDA;
Bond two threads to two CUDA devices,
respectively;

Run CUDA kernels by transferring the defined
structure;

Run other thread as normal OMP threads.

Parallel GPU and process synchronization

250

200 +

CPU Power
&
o

-
o
S

50

MotherBoard Power

Main

sem_tseml, sem2, sem3;

Genel

rate Matrices

Lunch multi-threads

Areal
Energy=
0.047wh

Locate
memaory
Read matrices

SEgments
Thread 1

Locate
memory
Read matrices

Thread 2 sEgments

Area2

A Energy=
0.055wh

——Two GPUs work with one CPU
—0ne GPU works with one CPU

7.5 8

Areal =
Energy=
0.084wh

8.5 9 95
Execution Time

Area2
Energy=
0.126wh

—Two GPUs work with one CPU

—O0ne GPU works with one CPU

7.5 8

85 9 9.5

Execution time line

10

sem_post(&seml);
sem_post(&sem2);
1

' pthread_join | threadl, NULL);
pthread_join | thread2, NULL);

>

1
1
1
: +
1 I
1 1
1 1
Lo ! |
sem_wait | GPU1 1
{&seml); | Kernell |
' —
i |
i |
i |
| |
| |
sem_wait | GPU2 i
. 1
[&sem2); | Kernel2 !
: L >
I |
1
450 Time
400 Start
350
. 300 Areal -
Q Energy
Z =0.0656wh
2 250
=
5
< 200 -
2
-9
9 150

50 — Two GPUs work with one CPU
——One GPU works with one CPU

7 7.5 8 8.5 9
Execution Time Line
CPU+GPU
CPU Energy Consumption 0.055 wh
GPU Energy Consumption 0.0686 wh
Main Board (Main Memory) 0.126 wh
Energy Consumption
CPU computation time 14s
GPU Kernel computation time 1.1s
Overall Time Consumption 1.45s
Overall Energy Consumption 0.2496 wh

1GPU
End

Area2
Energy
=0.0686wh

9.5 10

CPU+2GPUs

0.047 wh

0.0656 wh
0.084 wh

d.ls
0.65s
1l

0.1966 wh

Abstract:

Parallel GPU approach with signal
synchronization mechanism design;
Multithreading GPU kernel control
method to save CPU core numbers.

Method:
Partition matrix A into sub-matrices for
each GPU device;

qp
Create multithreads on CPU side to
instruct each CUDA kernel;

qp
Design synchronization signal
synchronize each CUDA kernel.

to

Results:

Parallel GPUs can achieve 71% speedup
in Kernel time, 21.4% in CPU time;
Power consumption decreased 22%.

Environment:

CUDA PE includes Intel QX9650
CPU/8GB DDR3 memory; GeForce 8800
GTS 512; OS Fedora 8.

Removing CUDA Overhead

Power (w)

Power (Watt)
g8 g -1

045 05 0.55 06 0.65

—+—1core

-m-2 cores 0.8
160 ~#-3 cores

-e-CPUGPU
140 —+—CPU2GPU

4 cores

Energy (ws)
Computation Time (s)

o 100 200 300 400 500 600 0 100 200 300 400 500 600
Matrixsize N Matrixsize N

(c) (d)

CUDA computation overhead when workload is mall:

(a) matrix size n=100;

(b) matrix size=500;

(c) Energy cost comparison of 1 to 4 cores, one-GPU PE and two
GPU PE;

(d) Computing time comparison of 1 to 4 cores, one-GPU PE and
two-GPU PE.

Abstract:

Remove CUDA overhead by calling C
function to compute small size workload,
save the time and energy cost by CUDA
overhead .

Method:
A CUDA overhead for kernel initialization,
memory copy and kernel launch before
start real kernel computation. A threshold
can be determined by experiment by
analysis as following:
k k k k

TCPU STGPU :TGPUoverhead +TCUDAkerneI

k k
Ecru = Pepu X Tepy

k k
Ecru = Peru-cpu-pe X Tepy
C function will be slected when matrix size

less than k where E&, < E&p, -

Environment:
CUDA PE includes Intel QX9650 CPU/8GB
DDR3 memory; GeForce 8800 GTS GPU;
OS Fedora 8.

CPU sharing GPU workload

le— —_— e _— T, ———>
' T, CPU ; i T, CcPU ! crU ‘
foad ker nel l load ker nel load Ker nel
Fery + Fory Pl Fepy + Fopy Fopy + ey
I I) I 1 :
(— %‘ 'F %]
TGP U I, GPU | GPl !
___) ___) “
kernel load pload
A E iy = Ta Fopy + Fopy)+ Tepy Fopy when T, > Topy
load ker nel _
B E = T Bopy + Bopr + ey) when 7, =1y

_ Joad ker nel load
0 E;mai — fePUu (PGPU + PCPU + PCPU)+ (total TGPU)JDCPU When TGPL-'<TCPU

<-4 -(a) GPU Workload %
~=—(a) GPU Time (s)

o Proper percentage of workload
~~(a)cPuTime (s) - Time | - - _ _ sharethat can improvethe >
——(b) GPU Time (s) Ve (sec) computation performance E

|

a
€« -----=== Topp <Tgpy =========== >, l

/‘/ !
F
rd 1.5 e -2
/
7 o

Tope > T
Py "
/ i
/ = (1)GPU Time Top, / :
- ~#=(1)CPU Time Tepp | |
2 ==(2)GPU Time [1
[
/ |
09 LRI e i S S50 S ot T T e ey | 1.4 -
0 1 2 3 4 5 6 7 0 0.5 1 1.5
CPU Workload Share (%) CPU Workload Sharing (%)
1 T 0.26 : —
-#-(1) GPU Energy —(a) Overall Energy (wh) '
'
~+(1)CPUE! ~—(b) O 11 Es h
(1) nergy 0.255 (b) Overall Energy (wh) '
——(1) Overall Energy [l
~~(2) GPU Energy H
~+-(2) CPU Energy 0.25 :
Energy ——(2) Overall Energy :
(wh) 0.245 Properpercentage of workioad '
... shaethatcanimprovethe ___ !
power performance :
i
0.235 1
'
. =3
0.1 B 0.23
0 1 2 3 4 5 6 0 0.5 15

1
CPU Workload Share (%) CPU Workload Share (%)

Abstract:

Determine the load to be shared by CPU based on
the computation character and performance
estimation.

Method:

T _WCPU T _
CPU — ' 'GPU T
SCPU SGPU

T= max(rcpu ’TGPU)

ECPU =T- PCPU’ EGPU :TGPU 'PGPU =

E = Ecpy + Ecpy

Emln = (ECPU + EGPU)min =(T- PCPU +TGPU : PGPU)min

Results:

An optimized minimum energy value can be
obtained when CPU (one core) workload share is
around 0.83%, the maximum energy saving can
reach around 1.3%. (for devices listed below)

Environment:
CUDA PE includes Intel QX9650 CPU/8GB DDR3
memory; GeForce 8800 GTS GPU; OS Fedora 8.

Power of Each COmponent (Watt)

Power of Each Component (Watt)
~ 2

CPU Frequency Scaling

Execution Time (s) Execution Time (s)

Power chart of CUDA on QX9650
(running on 2GHz) and GF 8800 GST/512

Power chart of CUDA on QX9650
(running on 3GHz) and GF 8800 GST/512

GPU. GPU.
0 1200
|
= d l
000 1000 GPU AUX N | Bonchmark
B = koo [
. 2 30 Overall Pow H
o0 = , :
8 = I X
% : l e L
‘
45 5. - :
3 [T
H [rmmE——) 171
¥ ‘ I
A
: 1 r‘« —T
T

o 0.5 1 2s

15 1 15
Exacution Tima () Estsution Tene)

Power chart of CUDA on QX9650
(running on 3GHz) and 2 GF 8800 GST/512
GPUs

Power chart of CUDA on QX9650
(running on 2GHz) and 2 GF 8800 GST/512
GPUs.

140

Simple Kernel

A b L
L

3
o

o
o

CPU Power (w)

Optimized Kernel

20

0 1 2 3 4 5 6 7 8
Kernel Execution Time (s)

Abstract:
Design a CPU frequency scaling method to save CUDA PE
power without decreasing the computation performance.

Method:
CPU frequency should match CUDA kernel calls in order to
not decrease GPU computation speed.

CPU frequency can be scaled down without compromising
with the PE’s performance however to save the CPU’s
power. qp

A rough estimation for the minimum CPU frequency should
besatisfy £ >F_ (most of the cases)

CPU —
F., >F (if

CPU — ° GPUMemory I:CPI 2 I:GPUMemory)

Results:

An optimized minimum energy value can be obtained when
CPU runs in low frequency (2GHz), comparing with CPU in
3GHz the total PE energy saving can reach 12.43% in
average when matrix size increases from 500 to 5000,
without computation speed decrease.

Environment:
CUDA PE includes Intel QX9650 CPU/8GB DDR3 memory;
GeForce 8800 GTS GPU; OS Fedora 8.

CUDA / MPI load scheduling for energy aware computing

N

coren \ Gore Core 3 Gorea [epuo | | Gput | | Kernel #1 | [Kernel #2 |
ffe cache Line| [8B cache Line 8B Cache Line 8B Cacha Lina 75 75
64KB 3GHz 64KB 3GHz 64KB 3GHz 64KB 3GHz Thread T* Thread
L1Cache L1 Cache L1Cache L1 Cache Al < . #0 #1
32KB D-Cache 32KB D-Cache 32KB D-Cache 32KB D-Cache
CUDA 8B Cacle Line 8B Cache Line I CPU
corresponding 6MB L2 Cakhe 3GHz 6MB L2 Cache 3GHz CPU
area / Jrs3sGHz x 4?}\:0.5@5/5.: ==z
in CPU core

1.333GHz
Main Mamory g8
HDD:

CUDA Occupations
in memory and bandwidth

[GPUL| roveas

l #0 Thread #n

(_~—_—_> CpPU

CPU

Abstract:

/I\ Thread Thread ,—’>
#1 #3

=

Core0 Corel Core2 Core3

E Overheads between threads

Can be Used for other operations

Threaa#2 .~

-

| Kernel #1 | | Kernel #2 |

Thread Thread
Ihread #n #0 #L

cPU | i |

1/
,
S

|] ceu

Core0 <Corel

E Overheads between threads

= =0

=

Core2 Core?

Core0 Corel pyTorep Core?

Run by other threads

@1

1. CPU manages
CUDA kernels on
local GPU devices

.o f'*’* >{Memoryq :
i :
- |
- ., . -
PE1

With C/CUDA/MPI on Multi-core and GPU clusters, partitioning and scheduling SPMD and SIMD program to
Multi-core CPU and GPU cooperative architectures .

MPI works as data distributing mechanism between the GPU nodes and CUDA as the computing engine.

Method:

Multi complier , MPI cluster computing algorithms and communication strategies are involved.

Environment:

CUDA PE includes Intel QX9650 CPU/8GB DDR3 memory; GeForce 8800 GTS GPU; OS Fedora 8.

H/S power performance factors for global Optimization

Main
memory

Processing
data/results

Core 1

Core 2

Core 3

Core 4

8 B cache line

8 B cache line

8 B cache line

8 B cache line

64 KB 3 GHz
L1 cache
32 KB D-cache

64 KB 3 GHz
L1 cache
32 KB D-cache

64 KB 3 GHz
L1 cache
32 KB D-cache

64 KB 3 GHz
L1 cache
32 KB D-cache

8 B cac

he line

8 B cache line

6 MB L2 cache 3 GHz

6 MB L2 cache 3 GHz

FSB
1.333 GHz x4 %2 B=10.6 GB/s

A CPU QX9650
/ | Data
ar r 7 flows th >
l“ / “'II | Data flows
u \
— » | Block (0,0)
Local =) 8
memory [<7] = == 2,
& o
-] (=
-
= -y
= [~
=}
E Grid
— w E
Local 2 3 Fg
memory =1 3 [~ & =
3 = »
=
= L
Texture | | Constant Global CUDA kernel
memory | | memory memory
L]
L]
.
.
(a) GPU NVIDIA 8800 GTS

Energy parameters

=

=

GPU and multicore

power-consuming component abstractions

GPU power model

Psystem (w)=Pgpy(WGPU) +Pcpyy(WCPU) + Prnainboard (W)

cPu P (wGPU
Pepu(w) Pnainboard W) crul)
@ PCl GPU
CPU g lissv,+n2V
="
b
;}
- Data
CPU+12V
Main board
PsU £33V, 45V, +12V
AUX+12V

(b)
Major Power Performance Parameter | Description
Components Factors
1.GPU micro-architecture; Toru .
2 Number of GPU cores emplovyed; Terw CPU and GPU time
ngu(ng”) 3_Numb‘er of CUDA kernels performed, E, .Ep CPU, GPU and
4.GPU frequency; E_. minimum energy
5.PCI bus speed; F F
6.CUDA kernel programming pattern au* et | CPU, GPU and GPU-
F, memory Frequenc
_ cpu| |- Number of CPU cores involved in computing; = id ryrred Y
‘P::pu(W) 2.CPU Frequency. W W | CPU. GPU workload
1.The PCI bus bandwidth for data transmission; 2:6‘"‘ fce];Lrgl’rS(PlE{opgf‘&?}r
2 The amount of data transferred between CPU il 4
P ioara{W) and GPU; Seou CPU, GPU Computing
3 The electrical feature of PCI bus. S speed (Flops)

Scenario of global Energy Optimization for SIMD Computing

Definition Description
Problem Space The multiplication for variable length of dense matrices and, with Definitions
multicore and GPU(s) device. of
Hardware Selection and employment of the number of CPUs and GPUs for global
Components solving the problem. optimization
S w model
b= % Component Frequency scaling on CPU and/or GPU components.
E g Configurations
2 S The optimization algorithm designed and implemented for solving
o Y Optimization the problem that available for optimizer to choose. Including
Algorithms parallelization scheme and workload scheduling.
Objective Functions The objective function which measure the utility of the solution
candidates to find the minimization.
Optimal Solution set Determine the number of components to be included in the final

solution so that the total time is less than or equal to a given limit and
the total energy is as minimum as possible.

Scenario of Global Energy Optimization for SIMD Computing

/ a.Selecting \

Optimization Candidates

Hardware Energy

CPU/GPU . optimization Optimal
component algorithms . 5-50"“ing Energy
selection 7 1.Testing Problem Solution
AN —>__ Space
Software/hardware :
Componerjt - o _) Objective Functions |= = = == == = = = = = -t
configuration 2.Measuring 3.Determining

Global optimizations

Numerical approach + Parallel GPU + Load scheduling

Computation Performance of Small Size Matrices Multiplication

Energy Consumptions of Small Size Matrices Multiplication

0.4 90
o 035 —rg 80
) ~ 70
(V] 0.3 =
E 0.25 o 0
T e so
.g 0.2 g o
§ 0.15 g o
% 0.1 S 20
= = 10)
= Block Matrix g’ 0 / Block Matrix
9 Simple Kernel t=4 — /' Simple Kernel
Ll - g ¥
c /' CPU Performance N=200 - e CPU Performance
N=200 N=300
N=300 N=400
N300 N=500 N=500
N=100 N=200 N=300 N=400 N=500 N=100 N=200 N=300 N=400 N=500
OCPU Performance 0.041 0.045 0.093 0.181 0.361 O CPU Performance 3.98 5.58 20.71 a1.76 86.12
mSimple Kernel 0.073 0.081 0.082 0.085 0.095 m Simple Kernel 21.78 22.64 23.33 24.44 25.34
@ Block Matrix 0.073 0.077 0.081 0.084 0.092 @ Block Matrix 19.08 19.89 20.11 21.02 24.78

Remove CUDA overhead + Parallel GPU + Load scheduling

Computation Performance on Different Components

Energy Consumptions on Different Components

09 ! m
—_
=z os 3
@ o7 .) =
E os | 2
'; 0.5) g
’ £
© o4 - -
g-] : - 2
S o3 :] 2
o / N=s00
@ o2 o
> . /" N=aoo o
i 0.1 A >
o L~ N=300 B0
/ 3
/ N=200
O - - — / S
RS Lo & — = / N=100
W & > > >
> S & &
e e
&
1cPu 2cPUs 3cpus acpus CPU+GPU CPU+2GPUs 1cPU 2cpus 3CPUS acpus CPU+GPU CPU+2GPUS
ON=100 0,122 0.112 0.103 0,113 0.192 0.215 ON=100 11.82 12.73 13.69 15.73 51.46 72.86
mN=200 0.141 0.101 0.083 0.121 0.194 0.463 WN=200 2024 11.73 13.41 16.24 56.85 163.05
ON=300 0.252 0.104 0.105 0.146 0.217 0.227 O N=300 23.39 12.84 14.57 17.43 54.87 B80.55
WN=400 0.564 0.312 0.212 0.153 0.191 0.202 mN=400 88.87 53.01 43.49 38.26 55.21 72.48
ON=500 0.853 0.411 0.305 0.238 0.208 0.264 DN=500 147.48 93.88 71.53 58.48 77.83 85.01

The energy consumption
on computing the
multiplications of small
matrices of size 100 to
500 using one multicore
with 4 cores / 8 threads
(Intel i7) and one GPU
(Tesla 2050C), with simple
Kernel and block matrix,
respectively.

The energy
consumption on the
same problems using
one to four cores
(QX9650), one-CPU-
one-GPU(8800GTS)
CUDA PE and one-
CPU-two-
GPU(8800GTS) CUDA
PE, respectively.

Conclusion and future work
Conclusion

1. An experimental power modeling and estimation method on GPU and multicore structures
has been illustrated;

2. Power parameters are captured by measurements on each component in a CUDA PE, thus
power features to the SIMD program can then be analyzed and obtained;

3. Five energy aware algorithm design methods have been introduced;

4. A global energy optimization model is created for CUDA PE by a four-tuple definition that
specifies the problem space, the objective functions, optimization candidates and optimal
solution set, the procedure to find optimal energy solution is described based on it.

5. The global energy optimization model is validated by examining C/CUDA programs
executing on real systems.

Future work

1. Energy estimation method can be refined to enhance its precision by including more
components;

2. Power parameters can be tuned for obtaining the minimum energy consumption for given
problems;

3. Global optimization methods can be used on managing energy aware software design
constrains in order to reach the best energy performance among all possible alternatives.

