

Design Space Exploration Towards a Realtime and Energy-Aware GPGPU-based Analysis of Biosensor Data

Constantin Timm¹, Frank Weichert², Peter Marwedel¹ and Heinrich Müller²

- ¹ Department of Computer Science XII, TU Dortmund, Germany
- ² Department of Computer Science VII, TU Dortmund, Germany

Contents

- Motivation
- Sensor and GPGPU-based Image Processing and Analysis Pipeline
- Design Space Exploration
- Results
- Conclusion

Motivation

- ☐ High-end graphics cards available in smaller and smaller systems
 → Concepts of HPC even in mobile systems
- GPGPU is standard for accelerating applications
- Energy efficiency is still often not a design objective

Motivation

- At embedded system design, application set is fixed
 - Hardware/Software-Codesign optimizes applications to the (corresponding) platform
- In the past optimization was used in the HPC domain, only for achieving higher acceleration
 - But if it is not needed, can we save energy

Contents

- Motivation
- Sensor and GPGPU-based Image Processing and Analysis Pipeline
- Design Space Exploration
- Results
- Conclusion

Microscopy/Image-Processing based Biosensor

- New sensor for detecting single viruses via microscopy
- Viruses have characteristic signal over time
- Sensor for in-situ disease spreading containment at airports etc
- Needs efficient image processing

Realtime Image Processing

- □ Physical effects → certain camera speed → speed of the image processing and analysis
- Image processing and analysis is done with GPGPU to meet realtime constraints
- Platform decision enables energy efficient solution

Contents

- Motivation
- Sensor and GPGPU-based Image Processing and Analysis Pipeline
- Design Space Exploration
- Results
- Conclusion

Design Space Exploration Overview

- DSE should reveal
 - an optimal system load configuration
 - an optimal system selection
- ☐ Two design parameters
 - Changing platforms / number of cores
 - Grouping of threads
- ☐ Two objectives
 - Processing speed / realtime requirements
 - Energy efficiency

Scalability of Algorithms (1)

- Algorithms with high parallelization grade
 - Wavelet-based Denoising

Template Matching (Virus Detection)

□ Parallel processing of M_xN time series for images with M_xN pixels

Scalability of Algorithms (2)

Algorithms with low parallelization grade: Marching-Squares

OpenCL: Nvidia Chip Design

- A (Nvidia) graphics chip comprises several streaming multi-processors (SM)
- ☐ Functional units of a SM:
 - Streaming processors (SP)
 - Shared Memory (16/32/64 K)
 - Registers (8192/16384/32768)

OpenCL: Programming Framework Elements

OpenCL: Work Group Size Considerations

- □ Large variety in runtimes
- Must be defined for each kernel
- Has impact on local memory use, scheduling etc
- Optimal size only optimal for one type of graphics card
- Optimal grouping is done by DSE, hard to predict
- → Work Size Group is one parameter of the DSE

Objectives: Energy and Performance Testbed

- Standard PC
- Devices under Test: PCI Express graphics card
- □ Measurements: current clamp at PCI Express power supply lines
- Automatic analysis of GPGPU applications via trigger markers at source code level

Design Space Exploration Goal

- ☐ Camera acquires 30 fps
- Image processing and analysis pipeline has to meet realtime constraints
- Energy efficiency is here defined as lowest energy consumption for one frame processing interval (~33 milliseconds)

Contents

- Motivation
- Sensor and GPGPU-based Image Processing and Analysis Pipeline
- Design Space Exploration
- Results
- Conclusion

GPGPU Application Features

- ☐ 19 OpenCL kernels to optimize
- 12 kernels for frame processing
- Image upload before / image download after processing
- 7 kernels for initialization and shut down

Devices under Test

NextION

9600 GT

GTS 250

■ Nvidia graphics cards with different size of cores

Graphics	Cores	Shader	Mem.	Idle
Card		Clock	Wid.	Power
		(MHz)	(bit)	(W)
NextION	16	1402	64	5.4 - 6.6
9600 GT	64	1625	256	33.48 - 43.2
GTS 250	128	1836	256	24.0 - 45.6

Results - Scalability

	$ION \rightarrow 9600 GT$	$ION \rightarrow 250 GTS$
Min	0.79	0.92
Max	5.92	9.31
Avg	2.88	3.43

- ☐ Min: Optimum <16
- Max: Superlinear scaling due to higher clock and memory speed

Results - Input Data Dependency

- 2 Validation Scenarios: Landscape and Portrait
- ☐ Kernel: Wavelet Denoising

Results - Input Data Dependency

- Kernels with many main memory accesses or a complicated control-flow
 - → Different work group sizes have higher effect

Results - Power Consumption Over Time

Processing one frame

Results - Energy Consumption per Kernel (J)

Wo	Work Group Size Wavelet Denoising		Pattern Matching		Form Factors					
X	Y	ION	9600 GT	250 GTS	ION	9600 GT	250 GTS	ION	9600 GT	250 GTS
16	2	0.0381	0.0335	0.0398	0.2973	0.2559	0.3148	0.0272	0.0347	0.0330
16	4	0.0392	0.0340	0.0400	0.2825	0.2103	0.2385	0.0263	0.0349	0.0349
16	8	0.0395	0.0340	0.0424	0.2900	0.2138	0.2455	0.0263	0.0368	0.0367
2	16	0.0415	0.0420	0.0542	0.2872	0.1976	0.2423	0.0306	0.0351	0.0348
2	2	0.0726	0.0723	0.0564	0.2877	0.2939	0.2501	0.0846	0.1228	0.0810
2	4	0.0536	0.0457	0.0409	0.2457	0.2000	0.2392	0.0530	0.0719	0.0508
2	8	0.0479	0.0363	0.0473	0.2822	0.1985	0.2531	0.0388	0.0473	0.0350
4	16	0.0407	0.0369	0.0443	0.2782	0.2002	0.2335	0.0267	0.0345	0.0341
4	2	0.0523	0.0451	0.0389	0.2837	0.2171	0.2662	0.0505	0.0714	0.0541
4	4	0.0458	0.0349	0.0411	0.2879	0.1931	0.2336	0.0362	0.0454	0.0360
4	8	0.0406	0.0355	0.0407	0.2885	0.2025	0.2529	0.0297	0.0353	0.0351
8	16	0.0399	0.0359	0.0434	0.2883	0.2120	0.2408	0.0263	0.0354	0.0359
8	2	0.0457	0.0344	0.0397	0.2990	0.2305	0.2878	0.0342	0.0460	0.0338
8	4	0.0394	0.0354	0.0429	0.2918	0.2055	0.2367	0.0277	0.0352	0.0344
8	8	0.0397	0.0361	0.0405	0.2826	0.2088	0.2454	0.0262	0.0340	0.0342

Results – Total Energy Consumption

Graphics	Runtime	$E_{T_0,T_{run}}^{g,p}$	$E_{T_{run},T_{slot}}^{g,p}$	$E^{g,p}$
Card	(ms)	(J)	(J)	(J)
ION	59.98	0.7	-	-
9600GT	18.16	0.95	0.39	1.34
250GTS	17.22	1.01	0.31	1.32

☐ Most energy efficient graphics card platform: GTS 250

Contents

- Motivation
- Sensor and GPGPU-based Image Processing and Analysis Pipeline
- Design Space Exploration
- Results
- Conclusion

Conclusions and Future Works

- ☐ Energy efficiency demands that an appropriate graphics card has to be chosen
- Energy saving techniques are mandatory to provide an energy-efficient system

- Dynamic voltage and frequency scaling could possibly be applied
- □ For more work group size configuration a DSE approach with e.g. an genetic algorithms should be used

Questions?

