

INTERNATIONAL CONFERENCE ON ENERGY-AWARE HIGH PERFORMANCE COMPUTING

Modeling Power and Energy of the Task-Parallel Cholesky Factorization on Multicore Processors

Pedro Alonso¹, Manuel F. Dolz², Rafael Mayo², Enrique S. Quintana-Ort²

<ロト <四ト <注入 <注下 <注下 <

September 12, 2012, Hamburg (Germany)

Motivation

- High performance computing:
 - Optimization of algorithms applied to solve complex problems
- Technological advance \Rightarrow improve performance:
 - Higher number of cores per socket (processor)
- Large number of processors and cores \Rightarrow High energy consumption
- Tools to analyze performance and power in order to detect code inefficiencies and reduce energy consumption

Outline

Introduction

Task-parallelism in the Cholesky factorization

- Algorithm specification
- Parallelization
- SMPSs operation

3 Power model

- Formulation
- Environment setup
- Component estimation
- Power/energy model testing

4 Experimental results

- Energy model evaluation
- Power model evaluation

Introduction

• Parallel scientific applications

• Examples for dense linear algebra: Cholesky, QR and LU factorizations

Tools for power and energy analysis

• Power profiling in combination with performance/tracing tools for HPC

Parallel applications + Power profiling

Is it possible to predict power/energy consumption?

- Objective: Power modeling
 - Predict power consumed by applications without power measurement devices.
 - Estimations are needed to determine how to address the power-challenge for energy-efficient hardware and software

Introduction

• Parallel scientific applications

• Examples for dense linear algebra: Cholesky, QR and LU factorizations

Tools for power and energy analysis

• Power profiling in combination with performance/tracing tools for HPC

Parallel applications + Power profiling Is it possible to predict power/energy consumption?

- Objective: Power modeling
 - Predict power consumed by applications without power measurement devices.
 - Estimations are needed to determine how to address the power-challenge for energy-efficient hardware and software

Algorithm specification Parallelization SMPSs operation

Algorithm specification

Cholesky factorization:

$$A = U^T U$$

 $A \in \mathbb{R}^{n \times n}$ symmetric definite positive (s.p.d.) matrix

 $U \in \mathbb{R}^{n \times n}$ unit upper triangular matrix

 \Rightarrow Consider a partitioning of matrix A into blocks of size $b \times b$

Algorithm specification Parallelization SMPSs operation

Algorithm specification

Cholesky factorization:

$$A = U^T U$$

 $A \in \mathbb{R}^{n \times n}$ symmetric definite positive (s.p.d.) matrix

 $U \in \mathbb{R}^{n \times n}$ unit upper triangular matrix

 \Rightarrow Consider a partitioning of matrix A into blocks of size $b \times b$

Algorithm specification Parallelization SMPSs operation

Algorithm specification

Cholesky factorization:

$$A = U^T U$$

 $A \in \mathbb{R}^{n \times n}$ symmetric definite positive (s.p.d.) matrix

 $U \in \mathbb{R}^{n \times n}$ unit upper triangular matrix

 \Rightarrow Consider a partitioning of matrix A into blocks of size $b \times b$

Algorithm specification Parallelization SMPSs operation

Algorithm specification

Cholesky factorization:

$$A = U^T U$$

 $A \in \mathbb{R}^{n \times n}$ symmetric definite positive (s.p.d.) matrix

 $U \in \mathbb{R}^{n \times n}$ unit upper triangular matrix

 \Rightarrow Consider a partitioning of matrix A into blocks of size $b \times b$

Algorithm specification Parallelization SMPSs operation

Algorithm specification

Cholesky factorization:

$$A = U^T U$$

 $A \in \mathbb{R}^{n \times n}$ symmetric definite positive (s.p.d.) matrix

 $U \in \mathbb{R}^{n \times n}$ unit upper triangular matrix

 \Rightarrow Consider a partitioning of matrix A into blocks of size $b \times b$

Parallelization \Rightarrow Not trivial at code level!

- 4 周 ト 4 戸 ト 4 戸 ト

Algorithm specification Parallelization SMPSs operation

Parallelization

Option 1: Use multi-threaded BLAS

- Straightforward approach towards LAPACK-level parallelization
- Highly tuned multi-threaded kernels: Intel MKL, AMD ACML or IBM ESSL,...
- Fork/join approach: parallelism is not fully exploited

Algorithm specification Parallelization SMPSs operation

Parallelization

Option 2: Use a runtime task scheduler

- We use SMPSs runtime-compiler framework to exploit task-parallelism
- Functions in code are annotated as tasks using OpenMP-like pragmas #pragma css task
- Operations are not executed in the order they appear in the code but respecting data dependencies
- SMPSs easily obtains performance traces which can be analyzed using *Paraver* (Performance analysis tools from Barcelona Supercomputing Center)

SMPSs proceeds in two stages:

- A symbolic execution produces a DAG containing dependencies
- 2 DAG dictates the feasible orderings in which task can be executed

Figure: Right-looking Cholesky DAG with a matrix consisting of 4×4 blocks

3 N

Algorithm specification Parallelization SMPSs operation

Parallelization

Option 2: Use a runtime task scheduler

- We use SMPSs runtime-compiler framework to exploit task-parallelism
- Functions in code are annotated as tasks using OpenMP-like pragmas #pragma css task
- Operations are not executed in the order they appear in the code but respecting data dependencies
- SMPSs easily obtains performance traces which can be analyzed using *Paraver* (Performance analysis tools from Barcelona Supercomputing Center)

SMPSs proceeds in two stages:

- A symbolic execution produces a DAG containing dependencies
- 2 DAG dictates the feasible orderings in which task can be executed

Figure: Right-looking Cholesky DAG with a matrix consisting of 4 \times 4 blocks

Algorithm specification Parallelization SMPSs operation

Cholesky factorization with SMPSs pragma annotations

```
void dpotrf_smpss( int n, int b, double *A, int Alda, int *info ){
 for (k=1; k \le n; k+=b) {
   dpotrf_u( b, &A_ref(k,k), Alda, info );
    if (k+b \le n)
      for (i=k+b: k \le n: k+=b)
       dtrsm_lutn( b, &A_ref( k, k ), &A_ref( k, j ), Alda );
      for (i=k+b: i \le n: i+=b) {
       dsyrk_ut( b, &A_ref( k, i ), &A_ref( i, i ), Alda );
        for (j=i+b; j<=n; j+=b)
          dgemm_tn( b, &A_ref( k, i ), &A_ref( k, j ), &A_ref( i, j ), Alda );
     }
   }
 }
void dpotrf_u( int b, double A[], int ldm, int *info ){
 dpotrf( "Upper", &b, A, &ldm, info );
void dtrsm_lutn ( int b, double A[], double B[], int ldm ){
  double done = 1.0:
 dtrsm("Left", "Upper", "Transpose", "Non-unit", &b, &b, &done, A, &ldm, B, &ldm);
void dsyrk_ut( int b, double A[], double C[], int ldm ){
  double dmone = -1.0, done = 1.0;
 dsyrk ("Upper", "Transpose", &b, &b, &dmone, A, &ldm, &done, C, &ldm);
void dgemm_tn ( int b, double A[], double B[], double C[], int ldm ){
 double dmone = -1.0, done = 1.0;
 dgemm( "Transpose", "No_transpose", &b, &b, &b, &dmone, A, &ldm, B, &ldm, &done, C, &ldm);
                                                                        < 6 >
```

Algorithm specification Parallelization SMPSs operation

Cholesky factorization with SMPSs pragma annotations

```
void dpotrf_smpss( int n, int b, double *A, int Alda, int *info ){
  for (k=1; k \le n; k+=b) {
   dpotrf_u( b, &A_ref(k,k), Alda, info );
    if (k+b \le n)
      for (i=k+b: k \le n: k+=b)
       dtrsm_lutn( b, &A_ref( k, k ), &A_ref( k, j ), Alda );
      for (i=k+b: i \le n: i+=b) {
       dsyrk_ut( b, &A_ref( k, i ), &A_ref( i, i ), Alda );
        for (j=i+b; j \le n; j+=b)
          dgemm_tn( b, &A_ref( k, i ), &A_ref( k, j ), &A_ref( i, j ), Alda );
     }
    }
#pragma css task input( b, ldm ) inout( A[1], info[1] )
void dpotrf_u( int b, double A[], int ldm, int *info ){
  dpotrf( "Upper", &b, A, &ldm, info );
#pragma css task input( b, A[1], ldm ) inout( B[1] )
void dtrsm_lutn ( int b, double A[], double B[], int ldm ){
  double done = 1.0:
  dtrsm ( "Left", "Upper", "Transpose", "Non_unit", &b, &b, &done, A, &ldm, B, &ldm );
#pragma css task input( b, A[1], ldm ) inout( C[1] )
void dsvrk_ut( int b. double A[], double C[], int ldm ){
  double dmone = -1.0, done = 1.0;
  dsyrk ("Upper", "Transpose", &b, &b, &dmone, A, &ldm, &done, C, &ldm);
#pragma css task input( b, A[1], B[1], ldm ) inout( C[1] )
void dgemm_tn ( int b, double A[], double B[], double C[], int ldm ){
  double dmone = -1.0, done = 1.0;
 dgemm( "Transpose", "No_transpose", &b, &b, &b, &dmone, A, &ldm, B, &ldm, &done, C, &ldm );
                                                                        < A >
```

Algorithm specification Parallelization SMPSs operation

SMPSs operation

SMPSs runtime:

Basic scheduling:

- Initially only one a task in ready queue
- A thread acquires a task of the ready queue and runs the corresponding job
- Opon completion checks tasks which were in the *pending queue* moving to *ready* if their dependencies are satisfied.

Formulation

Environment setup Component estimation Power/energy model testing

Power model formulation

Power model:

$$P = P^{C(PU)} + P^{S(Y)stem)} = P^{S(tatic)} + P^{D(ynamic)} + P^{S(Y)stem)}$$

 $P^{C(PU)}$ Power dissipated by the CPU: $P^{S(tatic)} + P^{D(ynamic)}$

 $P^{S(Y)stem)}$ Power of remaining components (e.g. RAM)

Considerations:

- Study case: Cholesky factorization. It exercises CPU+RAM and discards other power sinks (network interface, PSU, etc.)
- We assume P^{Y} and P^{S} are constants!
- P^{S} grows with the temperature inertia till maximum! \Rightarrow We consider a "hot" system!

< < >> < </p>

Formulation

Environment setup Component estimation Power/energy model testing

Power model formulation

Power model:

$$P = P^{C(PU)} + P^{S(Y)stem)} = P^{S(tatic)} + P^{D(ynamic)} + P^{S(Y)stem)}$$

 $P^{C(PU)}$ Power dissipated by the CPU: $P^{S(tatic)} + P^{D(ynamic)}$

 $P^{S(Y)stem)}$ Power of remaining components (e.g. RAM)

Considerations:

- Study case: Cholesky factorization. It exercises CPU+RAM and discards other power sinks (network interface, PSU, etc.)
- We assume P^{Y} and P^{S} are constants!
- P^{S} grows with the temperature inertia till maximum! \Rightarrow We consider a "hot" system!

Formulation Environment setup Component estimation Power/energy model testing

Environment setup

Setup:

- Intel Xeon E5504 (2 quad-cores, total of 8 cores) @ 2.00 GHz with 32 GB RAM
- Intel MKL 10.3.9 for sequential dpotrf, dtrsm, dsyrk and dgemm kernels
- SMPSs 2.5 for task-level parallelism
- Performance and tracing modes are enabled
- Power measurements: pmlib library

Internal power meter:

- ASIC-based powermeter (own design!)
- LEM HXS 20-NP transductors with PIC microcontroller
- Sampling rate: 25 Hz

< 6 >

3 N

Formulation Environment setup Component estimation Power/energy model testing

System and static power

Obtaining $P^{S(Y)stem}$ and $P^{S(tatic)}$ components:

- P^{Y} directly obtained measuring idle platform: $P^{Y} = 46.37$ Watts
- P^S obtained by executing dgemm kernel using 1 to 4 cores and adjusting via linear regression:

Task power when using different number of cores

Linear regression: $P_{\text{dgemm}}(c) = \alpha + \beta \cdot c = 67.97 + 12.75 \cdot c$

 $P^{S} \approx \alpha - P^{Y} = 67.97 - 46.37 = 21.6$ Watts

Formulation Environment setup Component estimation Power/energy model testing

Dynamic power

Dynamic power of kernels of the Cholesky factorization:

• To obtain P_K^D we continuously invoke the kernel K until power stabilizes and then sample this value. Example for dgemm:

	1 kernel mapped to 1 core				2 kernels mapped to 2 cores of different sockets			
	Block size, b				Block size, b			
Task	128	192	256	512	128	192	256	512
P_P^D (dpotrf)	10.26	10.35	10.45	11.28	9.05	9.09	9.28	10.44
P_T^D (dtrsm)	10.12	10.31	10.32	10.80	9.45	9.57	9.60	11.08
P_5 (dsyrk)	11.22	11.47	11.67	12.60	10.42	10.63	10.82	11.80
P_G^D (dgemm)	11.98	12.54	12.72	13.30	10.90	12.16	11.28	11.96
P_B^D (busy)	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62

$$P_G^D = P_{dgemm} - P^S - P^Y = P_{dgemm} - 67.97$$
 Watts

• Power increases linearly with the number of threads, from 1 to 4 mapped to a single core

• When two sockets are used, linear function changes, so we take into account this issue:

$$P_G^D = \frac{P_{\rm dgemm} - 67.97}{2}$$

< 6 >

-

Formulation Environment setup Component estimation Power/energy model testing

Power/energy model testing

Power model:

$$P_{Chol}(t) = P^{Y} + P^{S} + P_{Chol}^{D}(t) = P^{Y} + P^{S} + \sum_{i=1}^{r} \sum_{j=1}^{c} P_{i}^{D} N_{i,j}(t)$$

r stands for the number of different types of tasks, (r=5 for Cholesky)

c stands for the number of threads/cores

 P_i^D average dynamic power for task of type i

 $N_{i,j}(t)$ equals to 1 if thread j is executing a task of type i at time t; equals 0 otherwise

Energy model:

$$E_{Chol} = (P^{Y} + P^{S})T + \int_{t=0}^{r} P_{Chol}^{D}(t)$$
$$= (P^{Y} + P^{S})T + \sum_{i=1}^{r} \sum_{j=1}^{c} P_{i}^{D} \left(\int_{t=0}^{T} N_{i,j}(t) \right) = (P^{Y} + P^{S})T + \sum_{i=1}^{r} \sum_{j=1}^{c} P_{i}^{D} T_{i,j}$$

 $T_{i,j}$ total execution time for task of type *i* onto the core *j*

Experimental model evaluation:

- Matrix sizes: n = 4096, 8192, ..., 32768
- Block sizes b = 128, 192, 256, 512
- Cores/threads *c* = 2, 3, . . . , 8

(日) (同) (三) (三)

Formulation Environment setup Component estimation Power/energy model testing

Power/energy model testing

Power model:

$$P_{Chol}(t) = P^{Y} + P^{S} + P_{Chol}^{D}(t) = P^{Y} + P^{S} + \sum_{i=1}^{r} \sum_{j=1}^{c} P_{i}^{D} N_{i,j}(t)$$

r stands for the number of different types of tasks, (r=5 for Cholesky)

c stands for the number of threads/cores

 P_i^D average dynamic power for task of type i

 $N_{i,j}(t)$ equals to 1 if thread j is executing a task of type i at time t; equals 0 otherwise

Energy model:

$$E_{Chol} = (P^{Y} + P^{S})T + \int_{t=0}^{r} P_{Chol}^{D}(t)$$

= $(P^{Y} + P^{S})T + \sum_{i=1}^{r} \sum_{j=1}^{c} P_{i}^{D} \left(\int_{t=0}^{T} N_{i,j}(t) \right) = (P^{Y} + P^{S})T + \sum_{i=1}^{r} \sum_{j=1}^{c} P_{i}^{D}T_{i,j}$

 $T_{i,j}$ total execution time for task of type *i* onto the core *j*

Experimental model evaluation:

- Matrix sizes: n = 4096, 8192, ..., 32768
- Block sizes b = 128, 192, 256, 512

(人間) とうき くうり

Formulation Environment setup Component estimation Power/energy model testing

Power/energy model testing

Power model:

$$P_{Chol}(t) = P^{Y} + P^{S} + P_{Chol}^{D}(t) = P^{Y} + P^{S} + \sum_{i=1}^{r} \sum_{j=1}^{c} P_{i}^{D} N_{i,j}(t)$$

r stands for the number of different types of tasks, (r=5 for Cholesky)

c stands for the number of threads/cores

 P_i^D average dynamic power for task of type i

 $N_{i,j}(t)$ equals to 1 if thread j is executing a task of type i at time t; equals 0 otherwise

Energy model:

$$E_{Chol} = (P^{Y} + P^{S})T + \int_{t=0}^{r} P_{Chol}^{D}(t)$$

= $(P^{Y} + P^{S})T + \sum_{i=1}^{r} \sum_{j=1}^{c} P_{i}^{D}\left(\int_{t=0}^{T} N_{i,j}(t)\right) = (P^{Y} + P^{S})T + \sum_{i=1}^{r} \sum_{j=1}^{c} P_{i}^{D}T_{i,j}$

 $T_{i,j}$ total execution time for task of type *i* onto the core *j*

Experimental model evaluation:

- Matrix sizes: n = 4096, 8192, ..., 32768
- Block sizes b = 128, 192, 256, 512
- Cores/threads c = 2, 3, ..., 8

- < 同 > < 三 > < 三 >

Energy model evaluation Power model evaluation

Energy model evaluation

Manuel F. Dolz et al

Modeling Power and Energy of Task-Parallel Cholesky on Multicore Proc.

Energy model evaluation Power model evaluation

Energy model evaluation

Manuel F. Dolz et al

Modeling Power and Energy of Task-Parallel Cholesky on Multicore Proc.

Energy model evaluation Power model evaluation

Power model evaluation

Reconstruction of power profile using the power model \Rightarrow Performance trace is needed!

Trace of Cholesky factorization of order n = 20, 490 and block size b = 512, using 4 cores

Manuel F. Dolz et al Modeling Power and Energy of Task-Parallel Cholesky on Multicore Proc.

Conclusions and future work

Conclusions:

- Elaboration and validation of an hybrid analytical-experimental model to estimate power/energy for the Cholesky factorization
- Experimental results reveal the accuracy of the model:
 - $\bullet~$ Energy consumption estimation: $\pm 5\%$ and $\pm 15\%$ of error for the total and dynamic energy, respectively
 - Power profile estimation: relative average error of 2.92% and 6.85% for total and dynamic power, respectively
- However, it is easier to obtain an energy estimation than a power profile estimation due to inaccuracy of power meter (around ±5%)!

Future work:

- Predict power/energy even without executing the code!
- $\bullet~$ Initial step towards more ambitious goal $\Rightarrow~$ Development of models for the functionality of LAPACK
- Model extension to task-parallel procedures for distributed-memory platforms

A 35 b

Thanks for your attention!

Questions?

Manuel F. Dolz et al Modeling Power and Energy of Task-Parallel Cholesky on Multicore Proc.

∃ → < ∃</p>

< 4 A >