Performance Estimation of High Performance Computing Systems with Energy Efficient Ethernet Technology

<u>Shinobu Miwa</u> The University of Tokyo {miwa, aita, nakamura}@hal.ipc.i.u-tokyo.ac.jp

Executive Summary

- Energy Efficient Ethernet (EEE) is a technique to lower power consumption of networks
 - Pros: significant power saving of network links
 - Cons: slight performance penalty caused by link-on/off
- To support system developers, we propose a perf. estimation method of HPC systems with EEE
 - Using novel performance models with network profiles
- The experimental results show that our method has significant accuracy in the most cases
 - > 2.63% on average and 20.0% in worst case

Agenda

- Introduction
- Energy Efficient Ethernet (EEE) technology
- Performance estimation of HPC systems with EEE
- Experimental result
- Summary & future work

Power of Interconnection Networks

- Power consumption of interconnection networks is not negligible in modern HPC systems
 - It may achieve up to 33% of total system power*
 - The reason is that interconnection networks have widened bandwidth and increased redundancy
 - Ex.) Tofu network has ten links per node, each with 6.25GB/s
- PHYs (physical layer devices) are dominant modules in networks in terms of power consumption
 - Around 70% of network device power
 - Always activated to maintain link connection

* P. M. Kogge, Architectural Challenges at the Exascale Frontier, Simulating the Future: Using One Million Cores and Beyond (invited talk), 2008

Energy Efficient Ethernet (EEE)

- Ethernet standard for saving power of PHYs
 - Standardized as IEEE802.3az in 2010
 - Change into a low power mode during low network loads
 - Save PHYs' power by up to 70%*

Situation of EEE for HPC Use

- Few studies about EEE for HPC use have been done
 - There only exists a study of power evaluation of EEEsupported devices for a ping-pong test*
 - Power and performance of EEE-supported devices for HPC applications are still unknown
- Why?
 - No hardware for HPC systems
 - Ouite new technology

* P. Reviriego et al., An Energy Consumption Model for Energy Efficient Ethernet Switches, HPCS, 2012

Requirements for the Spread of EEE in HPC

- Development of EEE-supported devices for HPC systems
 - Each task force of a high-performance network (e.g. InfiniBand) should standardize EEE-technology rapidly
 - EEE-supported devices should be developed immediately
- Power/performance estimation when using EEE
 - Although there does not exist EEE-supported HPC systems yet, we want to know the impact of EEE on existing systems
 - If it is small, it would motivate system developers to use EEE
- Establishment of power management scheme
 - Optimal power management scheme may be different between Internet and interconnection networks

NIVERSITY OF TOKYO

Mission of This Work

- Our goal
 - To develop a performance estimation method of EEEsupported HPC systems
 - Power model of EEE already exists, but performance one does not
 - We can start the discussion about power management schemes without EEE-supported hardware
- Prerequisite for estimation
 - We do not have any EEE-supported devices for HPC
- Our approach
 - Using performance models with network profiles

EEE

- Technique to lower power consumption of PHYs during low network loads
 - Start to power a PHY off when detecting an idle state
 - Periodically get up for confirmation of link connectivity
 - Start to power the PHY on when a packet arrives

Although the detailed power management of EEE is not published, the most devices seem to use time-out control and on-demand wake-up

Performance Penalty of EEE

Packets arrived during a low power mode are delayed

 The wake-up delay is at least 16 microseconds in 1000BASE-T networks
We must model th

E-T networks		We must model this penalty!	
	Protocol	Min Tw (usec)	
	I00BASE-TX	30	
	1000BASE-T	16	
	IOGBASE-T	4.48	

Proposed Performance Model

- Suppose that an application *i* runs with *j* threads on an EEE-supported HPC system
- Elapsed time T^{ij} can be described below

$$T^{ij} = T^{ij}_{base} + T^{ij}_{overhead}$$

- T^{ij}_{base} : Elapsed time when the application i runs with j threads on an EEE-unsupported system
- $T_{overhead}^{ij}$: Time overhead caused by EEE

• We assume that $T_{overhead}^{ij}$ is written as follows

$$T_{overhead}^{ij} = n^{ij} \times f(I^{ij})$$

Model of T_{m}^{y}

- *n^{ij}*: Communication count per node
- I^{ij}: Average idle interval of network links
- ► *f* : Performance penalty per communication
 - The function f forms a step function Ideally, but performance penalty actually shows gradual increase because of I^{ij} variation

Model of Iⁱⁱ

- We suppose that all communication occurs periodically and transmits the same size of data
- Under the above assumption, I^{ij} can be written below

$$I^{ij} = (T^{ij}_{base} / n^{ij}) - (S^{ij} / B)$$

- S^{ij}: Average communication data size per node
- ► *B* : Network bandwidth per node

List of Proposed Models

$$T^{ij} = T^{ij}_{base} + T^{ij}_{overhead}$$

$$T_{overhead}^{ij} = n^{ij} \times f(I^{ij})$$

$$I^{ij} = (T^{ij}_{base} / n^{ij}) - (S^{ij} / B)$$

- > T_{base}^{ij} : Elapsed time on EEE-unsupported systems $\langle D B Y D B Y$ measurement
- n^{ij}: Communication count per node
- I^{ij}: Average idle interval of network links
- S^{ij}: Average communication data size per node
- ► f : Performance penalty per communication By assumed power management scheme
- B : Network bandwidth per node Already known

University of Tokyo

Evaluation Methodology

- Evaluation item
 - Accuracy of the proposed models
- Evaluation method
 - Estimate the performance under the following situation
 - EEE-disabled system \implies EEE-unsupported HPC system
 - EEE-enabled system \implies future EEE-supported HPC system
- Benchmark programs
 - Synthetic application
 - HPC applications (NAS Parallel Benchmark)

System Configuration

- Switch: Dell PowerConnect 5548
 - 48-port Gigabit Ethernet
 - Compliant with EEE
 - Time-out interval: 1 msec
- Node: HP ProLiant DL360p Gen8
 - 4 nodes
 - CPU: Xeon E5-2680, 2-socket
 - 8C16T, 2.7GHz, 130W TDP
 - Memory: 64GB (8GB x8)
 - NIC: HP FlexibleLOM 1Gb 4-port 331FLR Ethernet adapter
 - Compliant with EEE
 - Disable Turbo Boost and cpuspeed

THE UNIVERSITY OF TOKYO

l6 9/2/2013

Evaluation with Synthetic Application

- Synthetic application that all processes repeat concurrent communication
 - Repeat all-to-all 100,000 times for given array
 - Insert usleep function to adjust communication intervals
- Parameters used for experiment
 - # of Rank: 4 (1 rank/node), 16 (4 rank/node)
 - Array size: 256-131,072 Byte
 - Sleep time: 0, 100, 500, 1,000 usec

[Pseudo code of synthetic application]

Execute 5 times in each parameter and then average the results

Evaluation with NAS Parallel Benchmark

- Version: 3.3.1
- Compile options: -O2 –funroll-loops
- Parameters used for experiment
 - # of Rank: 4 (1 rank/node), 16 (4 rank/node)
 - Class: A, B, C

(However, we will only show the result of 16-rank Class-B)

Execute 10 times in each parameter and average the results

Evaluation Result of *T*^{*ij*}_{*overhead*} (Synthetic, 4-rank)

- We can model many cases correctly
- There exists a few points that show large errors
 - This is because the firmware changes CPU frequency unexpectedly

Accuracy of Performance Estimation (Synthetic)

Accuracy of Performance Estimation (Synthetic, 4-rank, 100 usec sleep)

- Performance degradation by EEE: up to 25.8% (4KB)
- Estimation error: 2.63% (on average)

20.0% (in the worst case)

Accuracy of Performance Estimation (NPB, 16-rank, class B)

- Since the most applications have a little communication, EEE hardly degrades the performance
- Only LU (which communicates frequently) shows a large error because of inaccuracy of model of average idle interval

Summary and Future Work

- Summary
 - Summarize requirements for the spread of EEE in HPC
 - Propose a novel performance estimation method for EEEenabled HPC systems
 - The most cases show good accuracy but some cases do not
 - Accurate profile-based estimation is hard because of many impractical assumption

Future work

- Develop trace-based estimation
- Evaluate other situation (other applications and topologies)

Any Questions?

