
Introduction Evaluation methodology Experimental results Conclusion

Evaluation of CPU Frequency Transition
Latency

Abdelhafid Mazouz 1 Alexandre Laurent 1

Benôıt Pradelle 1 William Jalby 1

1University of Versailles Saint-Quentin-en-Yvelines, France

ENA-HPC 2013, Dresden
September 02, 2013

1/19

Introduction Evaluation methodology Experimental results Conclusion

Outline

1 Introduction

2 Evaluation methodology

3 Experimental results

4 Conclusion

2/19

Introduction Evaluation methodology Experimental results Conclusion

Introduction

Power consumption is now a major concern in computing
systems

DVFS is an important technique to reduce energy
consumption:

Dynamically adapt CPU frequency and voltage

Reduce CPU frequency for memory-bound programs

Increase CPU frequency for CPU-bound programs

3/19

Introduction Evaluation methodology Experimental results Conclusion

Introduction

CPU frequency switching may imply varying delays

What about multi-phased programs?

Switching frequency between short phases incurs overhead

Need for precise estimation of transition latency

We propose a statistical approach to measure these delays:

We implemented a tool called FTaLaT.

Is freely distributed as open source software at
http://code.google.com/p/ftalat

4/19

http://code.google.com/p/ftalat

Introduction Evaluation methodology Experimental results Conclusion

Why CPU frequency transition latency estimation?

5/19

Each region has distinct performance/ power behavior.

Two frequency sequences are used.

Up to 30% in energy savings with effective frequency settings.

● ● ●

●

●
●

●

●

●

Two OpenMP parallel regions program:
CPU−bound and memory−bound regions

● ● ●
● ● ●

●

●

●

0
1

2
3

4
5

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

10
0

15
0

20
0

25
0

E
ne

rg
y

(jo
ul

es
)

8.01MB 8.33MB 8.65MB 8.97MB 9.29MB 9.61MB 9.93MB 10.25MB 10.57MB

Vector size of the memory−bound phase

●

●

FMAX−FMAX (Time)
FMAX−FMIN (Time)
FMAX−FMAX (Energy)
FMAX−FMIN (Energy)

Introduction Evaluation methodology Experimental results Conclusion

FTaLaT’s Measurement methodology

FTaLaT automatically measures the transition latency for
each pair of start and target CPU frequency:

Time between the request for target and start frequency

FTaLaT measures the performance of an assembly kernel:

CPU-bound kernel: a set of add instructions

Sufficiently sensitive to detect frequency change

6/19

Introduction Evaluation methodology Experimental results Conclusion

FTaLaT’s Measurement methodology

Measurement through two main steps:

1 Initialization:
1 Measure time of the kernel when start frequency is set

2 Measure time of the kernel when target frequency is set

2 Frequency transition latency measurement:
1 Set CPU frequency to target

2 Iteratively measure execution time of the kernel

3 Stop measurement when kernel’s time change is detected

7/19

Introduction Evaluation methodology Experimental results Conclusion

FTaLaT’s Measurement methodology

Effective evaluation methodology:

1 Precise estimation of execution time of the kernel for a
given CPU frequency

2 Comparing the kernel’s performance of two samples of
execution times

8/19

Introduction Evaluation methodology Experimental results Conclusion

FTaLaT’s Measurement methodology

Estimating the execution time

Running a program/kernel N times may lead to N distinct
execution time

Separate true performance from measurement noise

Average or median are not sufficient: outliers

For a fixed confidence level, building a confidence interval
(CI) of the average

Lower and upper bounds on the performance of the
assembly kernel for a tested CPU frequency

9/19

Introduction Evaluation methodology Experimental results Conclusion

FTaLaT’s Measurement methodology

Comparing the performance of two CPU frequencies

How to decide if two samples/sets are similar/different

A best practice: rely on a statistical test

The Student t-test: compares between the average
execution times of two samples:

Builds a confidence interval of the mean difference

Samples are not different if CI includes zero

Samples are different if CI does not include zero

10/19

Introduction Evaluation methodology Experimental results Conclusion

Initialization phase

Measure time with
the start CPU frequency

(10000 times)

Measure time with
the target CPU frequency

(10000 times)

compare the average of start and target
Student's t-test

average of start and
average of target
are not different?

Stop measurement
Build the CI (LB and UP)
of the mean for the target

frequency

yes no

11/19

Introduction Evaluation methodology Experimental results Conclusion

Latency estimation

Frequency transition
not detected

Frequency transition detected;
Report transistion delay

Set CPU frequency to target;
Start time measurement

Repeat kernel execution

Kernel's execution time
in CI of the mean of target?

yes

no

Stop time measurement;
Trigger additional measurements

Perform Student's t-test:
(Initial runs of target against new ones)

Confidence interval of mean
difference includes zero?

yes no

try again

12/19

Introduction Evaluation methodology Experimental results Conclusion

Experimental setup

Hardware setup

Processor Xeon X5650 Xeon E3-1240 Core i7-3770
CPU type Intel Core Westmere Intel Core SandyBridge Intel Core IvyBridge

Micro-architecture Nehalem SandyBridge IvyBridge
Cores 2x 6 1x4 1x 4

Hardware threads 2x 6 1x4 1x 8
Min CPU Frequency 1.59 GHz 1.6 GHz 1.6 GHz
Max CPU Frequency 2.66 GHz 3.3 GHz 3.4 GHz

Software setup

FTaLaT execution is repeated 31 times for each tested start and
target CPU frequency pair

FTaLaT relies on the TSC (RDTSC instruction) for time
measurement:

TSC is unaffected by frequency change on our test
machines.

FTaLaT uses the userspace Linux governor to select a given
CPU frequency.

13/19

Introduction Evaluation methodology Experimental results Conclusion

Experimental results and analysis

14/19

●

●

●
●

●

●
●

●

●

●

●

●

●

●

Frequency transition latency estimation

SandyBridge (4 cores) machine
Tested CPU Frequencies

La
te

nc
y

(m
ic

ro
−

se
co

nd
s)

1.6 1.7 1.8 2 2.1 2.2 2.3 2.4 2.6 2.7 2.8 2.9 3.1 3.2 3.3

20
30

40
50

60
70

● ● ● ● ● ● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

1.6 GHz
1.7 GHz
1.8 GHz
2 GHz
2.1 GHz
2.2 GHz
2.3 GHz
2.4 GHz
2.6 GHz
2.7 GHz
2.8 GHz
2.9 GHz
3.1 GHz
3.2 GHz
3.3 GHz

Transition delay is not constant across our test platforms

Transition latency increases when target frequency is higher
than the start one

Voltage and frequency increase performed in multiple steps

Introduction Evaluation methodology Experimental results Conclusion

Experimental results and analysis

15/19

● ●

●
● ●

● ●

●

Frequency transition latency estimation

Westmere (16 cores) machine
Tested CPU Frequencies

La
te

nc
y

(m
ic

ro
−

se
co

nd
s)

1.596 1.729 1.862 1.995 2.128 2.261 2.394 2.527 2.66

10
20

30
40

50
60

● 1.596 GHz
1.729 GHz
1.862 GHz
1.995 GHz
2.128 GHz
2.261 GHz
2.394 GHz
2.527 GHz
2.66 GHz

Transition latency is almost similar when target frequency is
smaller than the start one

Voltage and frequency decreased in one step

Introduction Evaluation methodology Experimental results Conclusion

Experimental results and analysis

● ● ●

●

●

●

●

●

●

●
●

●

●

●

Frequency transition latency estimation

IvyBridge (4 cores) machine
Tested CPU Frequencies

La
te

nc
y

(m
ic

ro
−

se
co

nd
s)

1.6 1.7 1.9 2 2.1 2.2 2.4 2.5 2.6 2.8 2.9 3 3.1 3.3 3.4

25
30

35
40

45
50

●
●

●

● ● ●
●

●

●

●
●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

1.6 GHz
1.7 GHz
1.9 GHz
2 GHz
2.1 GHz
2.2 GHz
2.4 GHz
2.5 GHz
2.6 GHz
2.8 GHz
2.9 GHz
3 GHz
3.1 GHz
3.3 GHz
3.4 GHz

Transition latency does not increase linearly on IvyBridge

16/19

Introduction Evaluation methodology Experimental results Conclusion

Experimental results and analysis

17/19

Case study: switching
frequency from 1.6 GHz to
3.4 GHz on IvyBridge

Kernel execution times
breakdown:

1 Iterations 1 to 48:
execution times at 1.6
GHz

2 Iteration 49:
transition point

3 Iterations 50 to 150:
effective frequency
change

Frequency transition latency
represents the total elapsed
time from iteration 1 to 50.

Frequency overhead (iteration
49) represents the effective
switching delay of frequency.

0 us

1 us

10 us

 0 20 40 60 80 100 120 140 160
K

er
ne

l l
at

en
cy

Iteration number

latency

Introduction Evaluation methodology Experimental results Conclusion

Conclusion

FTaLaT:

Statistical estimation of CPU frequency transition latency

Use of CIs to determine when a CPU frequency is enforced

Can be downloaded at http://code.google.com/p/ftalat

Observations:
We observe that changing CPU frequency

upward leads to higher transition delays

downward leads to smaller/ constant transition delays

Oldest processors generations has larger CPU frequency
transition latencies compared to newest ones

18/19

http://code.google.com/p/ftalat

Introduction Evaluation methodology Experimental results Conclusion

Thank you for your attention.

19/19

	Introduction
	Evaluation methodology
	Experimental results
	Conclusion

