E-AMOM: An Energy-Aware Modeling and Optimization Methodology for Scientific Applications

Charles Lively, Valerie Taylor, Xingfu Wu (TAMU) Hung-Ching Chang, Kirk Cameron (Virginia Tech) Shirley Moore (UTEP), Dan Terpstra (UTK)

EnA-HPC 2013, Dresden, Germany, Sep. 2, 2013

http://www.mummi.org

Motivation

Rank	Name	# Cores	R _{MAX} (PFfops)	Power (MW)
1	Tianhe-2	3,120,000	33.9	17.8
2	Titan	560,640	17.6	8.3
3	Sequoia	1,572,864	17.2	7.9
4	K computer	705,024	10.5	12.7
5	Mira	786,432	8.16	3.95

Source: Top500 list (June 2013)

MuMMI (Multiple Metrics Modeling Infrastructure) Project

E-AMOM: Energy-Aware Modeling and Optimization Methodology

E-AMOM Modeling

Start with large set of counters Refine set to identify important counters Regression analysis to obtain equations Focus on: Runtime System power CPU power Memory power

Counters

PAPI_TOT_INS	PAPI_L2_ICM
PAPI_FP_INS	PAPI_CA_SHARE
PAPI_LD_INS	PAPI_HW_INT
PAPI_SR_INS	PAPI_CA_ITV
PAPI_TLB_DM	PAPI_BR_INS
PAPI_TLB_IM	PAPI_RES_STL
PAPI_VEC_INS	Cache_FLD_per_instruction
PAPI_L1_TCA	LD_ST_stall_per_cycle
PAPI_L1_ICA	bytes_out
PAPI_L1_ICM	bytes_in
PAPI_L1_TCM	IPC0
PAPI_L1_DCM	IPC1
PAPI_L1_LDM	IPC2
PAPI_L1_STM	IPC3
PAPI_L2_LDM	IPC4
PAPI TOT CYC	IPC5

http://www.mummi.org

Spearman Correlation

Example: NAS Parallel Benchmark BT-MZ with Class C

Hardware Counter	Correlation Value	Hardware Counter	Correlation Value
PAPI_TOT_INS	0.9187018	PAPI_L1_ICA	0.4876423
PAPI_FP_OPS	0.9105984	PAPI_L1_ICM	0.4449848
PAPI_L1_TCA	0.9017512	PAPI_L2_ICM	0.4017515
PAPI_L1_DCM	0.8718455	PAPI_CA_SHARE	0.3718456
PAPI_L2_TCH	0.8123510	PAPI_HW_INT	0.3813516
PAPI_L2_TCA	0.8021892	PAPI_CA_ITV	0.3421896
Cache_FLD	0.7511682	Cache_FLD	0.3651182
PAPI_TLB_DM	0.6218268	PAPI_TLB_DM	0.3418263
PAPI_L1_ICA	0.5487321	PAPI_L1_ICA	0.2987326
Bytes_out	0.5187535	Bytes_in	0.26187556

Regression Analysis

Counter	Regression Coefficient
PAPI_TOT_INS	1.984986
PAPI_FP_OPS	1.498156
PAPI_L1_DCM	0.9017512
PAPI_L1_TCA	0.465165
PAPI_L2_TCA	0.0989485
PAPI_L2_TCH	0.0324981
Cache_FLD	0.026154
PAPI_TLB_DM	0.0000268
PAPI_L1_ICA	0.0000021
Bytes_out	0.00009

PCA and Multivariable Regression Analysis

Compute principal components of reduced performance counter event rates using PCA

Use the performance counters with highest PCA vectors and CPU frequency to build multivariate linear regression model

 $y = \beta_0 + \beta_f^* r_f + \beta_1^* r_1 + \beta_2 r_2 + \beta_3^* r_3 \dots + \beta_n^* r_n$

SystemG (Virginia Tech)

Configuration of SystemG			
Total Cores	2,592		
Total Nodes	324		
Cores/Socket	4		
Cores/Node	8		
СРИ Туре	Intel Xeon 2.8GHz Quad-Core		
Memory/Node	8GB		
L1 Inst/D-Cache per core	32-kB/32-kB		
L2 Cache/Chip	12MB		
Interconnect	QDR Infiniband 40Gb/s		

Two frequency settings: 2.4GHz and 2.8GHz

Training Set

12 training set points

- Intra-node: 1x1, 1x2, 1x3 at **2.8 GHz** and 1x4, 1x6, 1x8 at **2.4 Ghz**
- Inter-node: 1x8, 3x8, 5x8 at **2.8 Ghz** and 7x8, 9x8,10x8 at **2.4 Ghz**

Predict 30 points beyond of training set and validate the predictions experimentally :

- 1x4, 1x6, 1x8, 2x8, 4x8, 6x8, 7x8, 8x8, 9x8, 10x8, 11x8, 12x8, 13x8, 14x8, 16x8 at 2.8Ghz
- 1x1, 1x2, 1x3, 1x5, 2x8, 3x7, 4x8, 5x8, 6x8, 8x8, 11x8, 12x8, 14x8 16x8 at 2.4 Ghz

Modeling Results: Hybrid Applications

Average Error of Each Hybrid Application

Prediction Error Rates for Hybrid GTC

Runtime Prediction Error Rate for Hybrid GTC 6 4 2 ◆50 PPC 40 60 100 120 20 140 **75 PPC** ▲100 PPC -4 -6 -8 **Number of Cores System Power Prediction Error Rate for Hybrid GTC** 8 6 Percent Error 4 ◆50 PPC 2 **75 PPC** 0 ▲100 PPC 100 60 20 40 80 120 140 -2 **Number of Cores**

Modeling Results: MPI Applications

Average Error of Each MPI Application

Prediction Error Rates for MPI GTC

Runtime Prediction Error Rate for MPI GTC

System Power Prediction Error Rate for MPI GTC

Performance-Power Trade-off and Optimization Techniques

 Reducing power consumption
Dynamic Voltage and Frequency Scaling (DVFS)
Adjust CPU frequency

Dynamic Concurrency Throttling (DCT)
Adapt the level of concurrency

Shortening application execution time
Loop optimizations

Empirical Optimization Strategy

- 1. Input: given HPC application
- 2. Determine performance of each application kernel
- 3. Determine configuration settings
 - Setting for DVFS, DCT, or DVFS+DCT
- 4. Estimate performance and power using MuMMI
- 5. Apply loop optimizations to improve cache utilization
- 6. Use the combination of optimal configuration settings above to optimize the application performance and power consumption

http://www.mummi.org

Optimization Strategy: GTC (Weak Scaling: 100ppc)

Apply DVFS

- initialization,
- first 25 time steps of application
- final kernels
- Apply DCT
 - optimal configuration using 6 threads for pusher kernels after 30 time steps
- Additional loop optimizations
 - block size = 4x4 (100ppc)

Optimization Results: Hybrid GTC

#Cores	GTC Туре	Runtime(s)	Node Energy (KJ)	Node Power (W)
	Hybrid	453	132.82	293.19
16x8	Optimized-Hybrid	421 (-7.6%)	116.34 (-14.16%)	276.35 (-6.1%)
	Hybrid	455	134.03	294.58
32x8	Optimized-Hybrid	424 (-7.31%)	118.44 (-13.16%)	279.35 (-5.45%)
	Hybrid	436	128.53	294.79
64x8	Optimized-Hybrid	423 (-3.1%)	114.72 (-12.03%)	271.12 (-8.73%)

Optimization Strategy: Parallel Eqdyna (Strong Scaling: 200m)

Apply DVFS

- initialization
- hourglass kernel
- final kernels
- Apply DCT
 - improved configuration using 2 threads for hourglass and qdct3 kernels
- Additional loop optimizations
 - block size = 8x8
 - loop unrolling to respective kernels

Optimization Results: EQDyna

#Cores	EqDyna Type	Runtime(s)	Node Energy (KJ)	Node Power (W)
	Hybrid	458	132.36	289.03
16x8		422	111.83	265
	Optimized-Hybrid	(-8.5%)	(-18.35%)	(-9.1%)
	Hybrid	261	75.37	288.79
32x8	Optimized-Hybrid	246	64.23	261.11
		(-6.1%)	(-17.34%)	(-10.6%)
	Hybrid	151	42.08	278.67
64x8		145	36.23	249.89
	Optimized-Hybrid	(-4.14%)	(-16.15%)	(-11.52%)

http://www.mummi.org

Future Work

Energy-Aware Modeling

- Performance/power models of CPU+GPGPU systems
- Support additional power measures: IBM EMON API for BG/Q, Intel RAPL, NVIDIA Power Management
- Collaborations with Score-P to utilize rich data collection provided by Score-P

Additional Energy-Aware Optimizations

- Exploration the use of correlations among counters to provide optimization insights
- Exploring different classes of applications (dataintensive)