Mapping Fine-Grained Power Measurements to HPC Application Runtime Characteristics on IBM POWER7

September 2nd, 2013 | Michael Knobloch

The Exascale Innovation Center

EIC - Exascale Innovation Center

- Project partners: IBM Germany R&D and JSC
- Goal: Co-Design for next-gen of Supercomputers
- One work-package on power and energy-efficiency
 - Investigation of power consumption on Blue Gene (EnA-HPC'11)
 - Fine-grained power measurements on POWER7 (this work)
 - Energy modelling on POWER7 (to be published)

Test system – IBM Power 720

- 4-Core 3.0 GHz processor (Pseries, 8202-E4B)
 - 96 GFLOPS peak
 - 4 SMT threads per core
 - 64 kB L1 cache per core
 - 256 kB L2 cache per core
 - 16 MB L3 cache (shared)

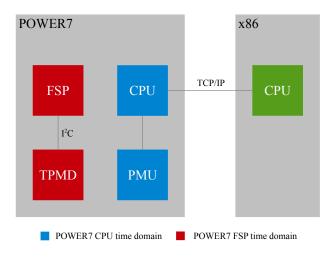
- 16 GB memory, 2x 300 GB 10K RPM SAS disk
- TPMD (Thermal Power Management Device)
- External power distribution unit (Raritan DPXS12A-16)
 - 3 s measurement interval, 1 W resolution

Amester

Amester

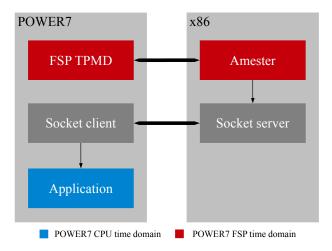
IBM Automated Measurement of Systems for Temperature and Energy Reporting software.

- Tool for monitoring and controlling power consumption of (IBM) servers – x86 and POWER
- Developed by Charles Lefurgy, IBM Research, Autisn, TX
- Histograms, traces for any sensor
- Scripting
 - Tcl command line
 - Send any IPMI command to measured system (ipmicmd)
 - On-line (50 ms interval) and off-line (buffered, 16 MB, 1 ms sampling) modes

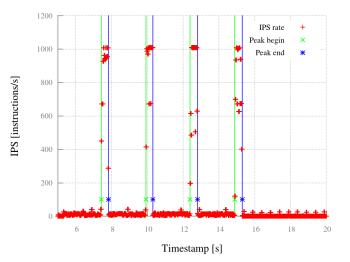

Amester (condt.)

- Sensor data collection
 - Whole system power data collection (CPU, Memory, Fans, IO, Storage)
 - CPU temperature, processor speed, system utilization, instructions per second, memory bandwidth

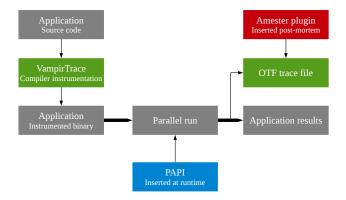
Sensor name	Units	Time scale	Description
PWR1MS	W	Instantaneous	Node power consumption
PWR1MSP0	W	Instantaneous	Processor power consumption
PWR1MSMEM0	W	Instantaneous	Memory power consumption
PWR32MS	W	avg. over last 32 ms	Node power consumption
PWR32MSP0	W	avg. over last 32 ms	Processor power consumption
PWR32MSMEM0	W	avg. over last 32 ms	Memory power consumption
IPS32MS	Mips	Every 32 ms	Instructions per second rate


Hardware Setup

September 2nd, 2013


Software Setup

September 2nd, 2013



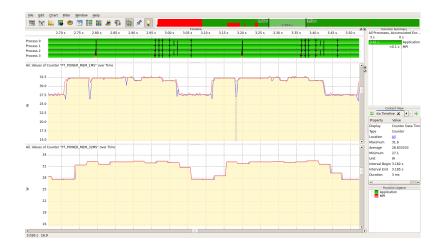
Time-stamp synchronization

VampirTrace Workflow

PEPC: Full run (without initialization)

PEPC: 1 Iteration

MP2C: Full run (without initialization)



MP2C: CPU Counter Resolution Comparison

MP2C: MEM Counter Resolution Comparison

MP2C: CPU Power and IPS

MP2C: MEM Power and L3 Data Cache Misses

Outlook

Conclusions

- Fine-grained power measurements help to better understand application power consumption
- Amester requires complicated setup
- Mapping to other metrics can be difficult due to timing issues
- Correlation does not imply causation

Future Work

- Energy modelling (to be published)
- Integration in Score-P and Scalasca