

CoolEmAll

Optimizing cooling and energy efficiency in Data Centers A holistic approach

Outline

Ion e Efficiency on, Visualization an pport toolkit) Decis ptimizing cooling efficiency ummary

& HVAC

ICT sector is responsible for around 2 % of the global energy consumption, data centres taking large fraction of it Energy consumption in a data centret

ation today:

I Energy consumptions depends on

t of executing wo

workload (jobs) and application type (nature of jobs)

(H)

- Efficiency of HW / resource
- Resource management strategy
 - Cooling efficiency (depends on environme conditions, heat load and arrangement of rack

In many data centres, **50 % of the energy is consume** (resulting in bad energy efficiency)

potential for improvement, addressed in CoolEmA

What is all a put COOLEMALL PROJECT

CoolEmAll Project

CoolEmAll EU Project: www.coolemall.eu

evaluate and improve cooling- and energy efficiency of modular data centers by optimizet ion of their design and operation for a whoe range of Workloads, IT equipment and

Optimized ComputeBox Blueprints and Data Centre Efficiency Building Blocks (DEBBs) reflecting H // and facility-configuration/models used by SVD Toolkit

Simulation, visualization and decision support toolkit (SVD Toolkit), enabling optimisation of modular data centre building blocks for a wide range of options

CoolEmAll Approach

Application types

- HPC
- Virtual machines

Application characteristics

- CPU-bound
- Mem-bound
- IO-bound
- Scale

Workload mngmt policies

- Workload consolidation
- Energy-aware policies
- Thermal-aware policies

CoolEmAll Approach

- Models of Cooling devices
- CRAC, Chillers, fans, heatexchanger..
- Operation params
- Higher server room temperature
- Free air cooling
- Liquid cooling

Visualisation

CoolEmAll Approach

Air/heat flow distribution map ENERGY- AND THERMAL-AWARE MODULAR APPROACH **COOLING APROACHES** MANAGEMENT **Evaluation Compute Box Compute Box** Application Workload Mgmt Efficiency of Characteristics Policies Cooling Methods Blueprint 1 Blueprint 2 **Metrics** Cooling / Airflow related metrics SIMULATION, VISUALISATION AND DECISION SUPPORT TOOLKIT Energy/Power • 20 related metrics (PUE) NEXT GEN EFFICIENT DATA CENTRES Productivity metrics EFFICIENT THERMAL OPTIMAL AIRFLOW DISTRIBUTION ARRANGEMENT Interaction Rearrangement **Env.** Conditions . . .

ComputeBox R

DATA CENTRE EFFICIENCY B **BLOCKS (DEBB)**

DEBB

a DEBB? Data Center Efficiency Building The DEBB is an abstraction rage hardware and OC granula find the eff uration while plar la ter Ce sed for thermodynamic m **(S**) Tool Used for configuration and reconfiguration Availability To be publicly available Defined according to open specificatio

DEBB Specification

1st Review, 30.10.2012, Brussels

DEBB Granularity Levels

Granularity-levels

Node unit
single blade CPU unit
(for instance alRECS OPU mlodule)

assembled units of node units for instance a complete REC\$18)

reflects a typical rack

ComputeBox2 Reflects a container or a Data Centre filled with racks and additional infrastructure

Simulation Visualization and Decision support Toolkit

SVD TOOLKIT

SVD Toolkit

allows analysis and opti ructure built of DEBBs (level n), tak parameters): HWHModels (represented by loads ement Policies onmental conditions iethods ar red by com Coupled simulations of various workloads an applications, **ØFD** simulation to analyze airflow and hear mansfer in a data centres Visualization of results Assessment of Results

Holistic approach

Integrated analysis of workloads, IT equipment, and heat transfer

SVD Toolkit 2nd Prototype

2nd Prototype

SVD Toolkit 2nd Prototype

DEBB Configurator

hanit		No 🖓 Latest Articles on Comp. 🛞 Cloud Comput		atro
	oigure	an O Lance Protector Compt. (2) Choice Company	ny conta 🖸 mila 🖕 conta 🐸 tako bina	AP 10/11
÷ 1681	arlipseter			
		lotes		
() caros	1875			
PROCESS	015 +	lane		Options
BARDA	es +	Conpiles corps-BAFT401		6 ×
C00.85	dences +	Computer compa-BAF TSEN		6 1
IBIORE	5 +	Congulec corga-BING P6400		8 X
KODS	+	Computer compa-CCA N2E00		6 1
CHISSS	+	Kontron COMe-46C2 7-2715QE ECC		G X
0 NODES	+	Kontron CONIN-4552 7-381502 EOC		G 💶
ROS	+	Taradex Wootpester 2510		G X
	+	Taradex Woodpester 2530		8 X

Interactive rack

(re)arrangement

H L R S 🚳 COVISE oom Optimizatio

-GUI – advanced Vis veb based GUIs to all components DEBB configurator

election of Applicat

lisation

eduling

Validation of models

Simulations based on real measurements and re-usable building blocks

Real monitoring data from execution of experiments on test bed

Comparison of real measurements with simulation models

SVD Toolkit Output

What can it OPTIMIZING COOLING EFFICIENC

Main Use-Cases

C1 - Optimization of rack arrangement in a server orn using open data centre building blocks Goal: To find an optimal arrangement of tacks and aisles containment to prevent hor and cold all mixing and minimize risk of hor spots

I - Capacitity management

Gcal To select the optimal configuration of hardware and given application types factoring in performance and energy-efficiency constraints

C3 - Analysis of free cooling efficiency

<u>Goal</u>: To find a maximum inlet temperature in centre can operate safely for given workloads

Goal: To find an optimal arrangement of racks and aisles containment

Optimisation of rack arrangement

Ideo interactive rearrangement racks in server-room manysis and Visualization of heat flow distribution deputication of hotspots

Goal: To select optimal configuration for given workload

Summary

felivers two main en source SVD toolkit to inves d energy-efficiency in data nulat ons lest practises and open desig eBox bluep nt and minimising data centres bv ion of their design and operatio g to specific work hads and sults available on <u>www.goolemall.eu</u> Monitoring and control platform, application pr SVD Toolkit - 1st Prototype **Open DEBB specification** Vork in progress on 2nd Prototype

