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Points	  to	  get	  across	  

•  Waste-‐free	  HPC	  soGware	  is	  
instrumental	  in	  the	  baJle	  
against	  power	  

•  Scale-‐freedom	  in	  parallel	  
programming	  is	  a	  path	  to	  
energy-‐efficiency	  

•  Energy	  challenges	  will	  
remind	  us	  of	  the	  Hydra	  
Lernaia	  
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Energy	  in	  HPC	  
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HPC	  has	  lead	  the	  way	  (or	  not?)	  

•  The	  history	  of	  BlueGene	  
–  Based	  on	  processors	  for	  the	  embedded	  systems	  market	  (PowerPC)	  
–  Pioneered	  “scale-‐out”	  idea,	  now	  common	  in	  datacentres	  

•  Many	  nodes	  with	  simple	  cores,	  fast	  interconnect	  
–  Dominated	  Top-‐500,	  Green-‐500	  list	  

•  Embedded	  processors	  are	  now	  commodity	  components	  
–  Able	  to	  power	  compe;ng	  supercomputers	  (e.g.	  BSC	  MontBlanc)	  
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Leader	  or	  laggard?	  
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Leader	  or	  laggard?	  

•  Is	  HPC	  reusing	  or	  
discovering?	  
–  Processors	  
originally	  designed	  
for	  the	  mobile	  
phones	  market	  

–  Clock	  ga;ng,	  DVFS,	  
device	  sleep	  states	  
well	  known	  for	  20	  
years	  
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What	  can	  HPC	  contribute	  towards	  
zero-‐power	  compu:ng?	  
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The	  challenge	  and	  the	  opportunity	  
•  Assume	  that	  currently	  most	  energy-‐efficient	  

supercomputer	  sustains	  improvement	  towards	  an	  Exaflop	  
–  Will	  need	  2384×	  in	  performance,	  202.7	  MW	  

•  Assume	  target	  power	  cap	  of	  25	  MW	  
–  Need	  two	  orders	  of	  magnitude	  improvement	  in	  FLOPS/W	  
–  Can	  hardware	  achieve	  this	  improvement	  without	  compromising	  
the	  power	  target?	  

–  If	  systems	  have	  any	  hope	  to	  achieve	  this	  they	  must	  eliminate	  
waste	  

–  Actual	  power	  cap	  may	  be	  lower	  than	  nominal	  power	  
consump;on	  

–  Opportuni;es	  for	  soGware!	  
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Where	  can	  HPC	  make	  the	  difference?	  

•  HPC	  has	  been	  leading	  the	  way	  in	  parallel	  programming	  
technology	  
–  Parallel	  languages,	  compilers,	  run;me	  systems	  

•  HPC	  priori;zes	  efficiency	  in	  programming	  
– Minimise	  communica;on	  
–  Balance	  the	  load	  
–  U;lise	  available	  cores	  
–  Reduce	  cache	  and	  memory	  footprint	  

•  Waste-‐free	  parallel	  programming	  is	  energy-‐efficient	  
–  Opportunity	  to	  reduce	  power	  consump:on	  
–  Opportunity	  to	  do	  more	  within	  a	  power	  budget	  
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What	  can	  parallel	  languages	  and	  
run:mes	  do	  to	  reduce	  waste?	  
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If	  parallel	  programs	  were	  scale-‐free	  
•  Power	  increasing	  linearly	  with	  

ac;ve	  cores	  
–  Previously	  dynamic,	  but	  now	  
also	  sta;c	  power	  

•  Program	  speedup	  lines	  have	  
knees	  
–  Synchronisa;on,	  conten;on	  for	  
resources	  or	  the	  algorithm	  itself	  

–  Energy-‐efficient	  programs	  
would	  execute	  at	  the	  beginning	  
of	  the	  knee	  

–  How	  do	  we	  locate	  the	  knee?	  
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Exploring	  the	  concurrency-‐power	  trade-‐off	  

•  Programs	  execute	  dis;nct	  phases	  	  
–  Programmer	  annotated	  or	  auto-‐

mined	  from	  ;me	  series	  of	  HPMs	  
–  Compute-‐,	  memory-‐	  or	  

communica;on-‐bound	  

•  Dynamic	  scalability	  predictors	  
–  Concurrency	  sweet	  spot	  

detec;on	  with	  empirical	  
modeling	  [ICS06]	  

–  Rigorous	  sta;s;cal	  modeling	  
[TPDS08]	  

–  Machine	  learning	  approaches	  
[EuroPar10]	  

–  MPI	  task	  aggrega;on	  [IPDPS10]	  
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Scale-‐freedom	  improves	  energy-‐efficiency	  
Scale-‐free	  parallel	  programs	  can	  reduce	  their	  power	  budget	  
Scale-‐free	  parallel	  programs	  adapt	  to	  power	  caps	  
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Is	  controlling	  concurrency	  enough?	  
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Beyond	  scale	  freedom	  

Mul;-‐objec;ve	  
op;miza;on	  	  [PACT08]:	  

– Control	  mul;ple	  
power	  knobs	  at	  a	  fine	  
granularity	  (per	  task,	  
in	  microseconds)	  

– Applied	  to	  DCT,	  DVFS	  
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Taming	  locality	  issues	  
Original	  DCT	  work	  failed	  to	  capture	  implica;ons	  of	  thread	  
migra;on	  	  

Example:	  Up	  to	  45%	  execu;on	  
;me	  varia;on	  across	  85	  
mappings	  

16,	  4-‐core	  nodes:	  63	  million	  mappings.	  
1000,	  4-‐core	  nodes:	  1043	  mappings.	  

4,	  4-‐core	  nodes:	  43,680	  mappings.	  

16	  
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DyNUMA	  training	  using	  ANN	  

Op;mize	  for	  concurrency,	  ver;cal	  and	  horizontal	  locality	  	  
	  [IISWC12,	  SIGMETRICS	  PER]	   17	  
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Modeling	  accuracy	  
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Performance	  on	  TilePro64	  

•  Tile64Pro	  OS	  default	  Linux	  mapping	  is	  inefficient	  	  
•  More	  concurrency	  	  does	  not	  necessary	  improve	  performance	  	  
•  Counter-‐intui;ve	  mappings	  op;mize	  energy-‐efficiency	  
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Is	  controlling	  concurrency,	  mapping	  and	  
waste	  at	  one	  program	  level	  enough?	  
	  

20	  
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Energy-‐Aware	  Hybrid	  Programming	  

Slack	  dispersion	  algorithms	  [IPDPS10,TPDS13]	  

Task	  i	  

Task	  j	  

Task	  k	  

1 2 2 3 1 3 1 2 

1 2 2 3 3 1 1 2 

1 2 2 3 1 3 1 2 
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Cri;cal	  path	  based	  modeling	  

Predic;ng	  ;me	  vs.	  predic;ng	  scaling	  func;on	  

ti = min
1≤ thr ≤X⋅Y

ti, j,thr
j=1

M

∑

tc =max1≤i≤N
min

1≤ thr ≤X⋅Y
ti, j,thr

j=1

M

∑
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Time	  modeling	  enables	  slack	  dispersion	  

Slack	  dispersing	  DCT&DVFS	  [IPDPS10,TPDS13]	  

Use	  cri;cal	  path	  ;me	  to	  determine	  slack	  (essen;ally	  imbalance)	  

Time	  constraint:	  

Energy	  constraint:	  

Δti
slack = tc − ti − ti

comm − tdvfs

Δtijk ≤ Δti
slack

1≤ j≤M
∑

tijk fk ≤ ti
1≤ j≤M
∑ f0
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Performance	  Evalua;on	  

Consistently	  significant	  energy	  savings	  with	  weak	  and	  strong	  scaling 
24	  
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Have	  we	  solved	  our	  problems?	  
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How	  much	  parallelism	  is	  (really)	  there	  ?	  

26	  
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(a) Nested pipelines 
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local 
queue 

local 
queue 

write 
queue 

(b) Positioning of hyperqueues 

1 void Fragment( pushdep<chunk t ⇤>write queue ) {
2 while( more coarse fragments ) {
3 chunk t ⇤ chunk = ...;
4 { // Set up inner pipeline with local queue

5 hyperqueue<chunk t⇤> ⇤ q
6 = new hyperqueue<chunk t ⇤>;
7 spawn FragmentRefine(
8 chunk, (pushdep<chunk t ⇤>)⇤q );
9 spawn DeduplicateAndCompress(

10 (popdep<chunk t ⇤>)⇤q,
11 (pushdep<chunk t ⇤>)write queue );
12 }
13 }
14 sync;
15 }
16 int main() {
17 hyperqueue<chunk t⇤> write queue;
18 spawn Fragment( (pushdep<chunk t⇤>)write queue );
19 spawn Output( (popdep<chunk t⇤>)write queue );
20 sync;
21 }

(c) Hyperqueue implementation of dedup.

Figure 10: Alternative implementation choices for dedup. The graphics (a) and (b) show dynamic instantia-
tions of each pipeline stage, how they are grouped and where collections of data elements are used. Dashed
lines indicate instances of the inner pipeline. (c) Sketch of hyperqueue code according to (b).

Figure 10 (a) shows the dynamic instantiations of all
pipeline stages. Two large chunks have been found, where
the first is further split in three small chunks and the latter
is split two-ways. This graphic demonstrates a shortcoming
of the nested pipeline approach: all the small chunks for a
large chunk must be completed and gathered on a list be-
fore the output stage can proceed. This puts an important
limit to scalability, as the number of small chunks per in-
ner pipeline is typically 500-600 and may run up to 65537,
potentially resulting in long and skewed delays.

Hyperqueues allow consuming elements concurrently to
pushes, removing the wait times of the output stage un-
til large chunks have been fully processed as in the case of
nested pipelines. Moreover, like Cilk++ list reducers, hyper-
queues allow us to construct parts of the list concurrently
and merge list segments as appropriate. This way, all nested
pipelines can push elements on the same hyperqueue and the
write actions become synchronized and ordered between in-
vocations of the nested pipeline. Finally, hyperqueues can be
used directly as a drop-in replacement for lists, as they sup-
port the required push and pop operations (Figure 10 (b)).

Our hyperqueue implementation inserts a local hyperqueue
between the FragmentRefine stage and the Deduplication
stage. Also, all instances of the Deduplication and Com-
press stages that correspond to the same nested pipeline
(large chunk) are merged into a single sequential task. This
design was chosen to coarsen the tasks and reduce dynamic
scheduling overhead (which is absent in the pthreads imple-
mentation). Ample parallelism remains in the program.

Our formulation of dedup follows the original sequential
algorithm, which greatly a↵ects programmer productivity.
Figure 10 (c) shows a sketch, where the main procedure
spawns two tasks Fragment and Output. Fragment calls all
but the output stage in a recursive manner: whenever a
large chunk is constructed, a nested pipeline is created using
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Figure 11: Dedup speedup with various program-
ming models.

two tasks that communicate through a local hyperqueue.
Completed small chunks are produced on the write queue.
In contrast, the TBB version of dedup requires significant
restructuring of the code in order to match the structure
imposed by TBB.
Note that the hyperqueue enforces dependences across

procedure boundaries. This is an e↵ect that is hard to
achieve in Swan, where dataflow dependences can exist only
within the scope of a procedure.
Figure 11 shows speedup for dedup in the pthreads, TBB

and Swan programming models. While Reed et al demon-
strated improved performance of their TBB implementation
relative to the pthreads implementation in PARSEC 2.1 [22],
our evaluation using PARSEC 3.0 shows that the TBB im-
plementation is slower than the pthreads implementation.
The Swan implementation with hyperqueues outperforms
the pthread version by at least 12% and up to 30% in the re-
gion of 6-8 threads. The hyperqueue implementation looses
some of its advantage for 22 threads and higher due to task
granularity and locality issues.
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Fig. 2. Task graph of tile Cholesky factorization (5⇥ 5 tiles).

and multiGPU systems that can enable applications to fully exploit the power
that each of the hybrid components o↵ers.

4.1 Hybridization of DLA algorithms

We split the computation into sub-tasks and schedule their execution over the
system’s hybrid components. The splitting itself is simple, as it is based on split-
ting BLAS operations. The challenges are choosing the granularity (and shape)
of the splitting and the subsequent scheduling of the sub-tasks. It is desired
that the splitting and scheduling (1) allow for asynchronous execution and load
balance among the hybrid components, and (2) harness the strengths of the com-
ponents of a hybrid architecture by properly matching them to algorithmic/task
requirements. We call this process hybridization of DLA algorithms. We have
developed hybrid algorithms for both one-sided [15, 16] and two-sided factor-
izations [6]. Those implementations have been released in the current MAGMA
library [17]. The task granularity is one of the key for an e�cient and balanced
execution. It is parameterized and tuned empirically at software installation time
[18].

4.2 Scheduling of hybrid DLA algorithms

The scheduling on a parallel machine is crucial for the e�cient execution of an
algorithm. In general, we aim to schedule the execution of the critical path of

©	  Ltaief	  et	  al.,	  LAPACK	  Note	  #223	  	  
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Emerging	  scale-‐free	  programming	  models	  

•  Annotate	  task	  memory	  
footprint	  and	  side-‐effect	  

input (rd-only), 
inout (rw), output 
(wr-only)!

•  Discover	  task	  dependences	  
at	  run-‐;me	  
–  dynamically	  extract	  task	  
parallelism	  

–  schedule	  tasks	  out-‐of-‐order	  
–  E.g.	  “depend”	  clause	  in	  
OpenMP	  4.0	  RC2	  (March	  
2013)	  

27	  

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM

xTRSM

xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK

xSYRK

xGEMMxGEMM xGEMM xGEMM xGEMM xGEMM

xGEMM xGEMM xGEMM

xGEMM

Fig. 2. Task graph of tile Cholesky factorization (5⇥ 5 tiles).

and multiGPU systems that can enable applications to fully exploit the power
that each of the hybrid components o↵ers.

4.1 Hybridization of DLA algorithms

We split the computation into sub-tasks and schedule their execution over the
system’s hybrid components. The splitting itself is simple, as it is based on split-
ting BLAS operations. The challenges are choosing the granularity (and shape)
of the splitting and the subsequent scheduling of the sub-tasks. It is desired
that the splitting and scheduling (1) allow for asynchronous execution and load
balance among the hybrid components, and (2) harness the strengths of the com-
ponents of a hybrid architecture by properly matching them to algorithmic/task
requirements. We call this process hybridization of DLA algorithms. We have
developed hybrid algorithms for both one-sided [15, 16] and two-sided factor-
izations [6]. Those implementations have been released in the current MAGMA
library [17]. The task granularity is one of the key for an e�cient and balanced
execution. It is parameterized and tuned empirically at software installation time
[18].

4.2 Scheduling of hybrid DLA algorithms

The scheduling on a parallel machine is crucial for the e�cient execution of an
algorithm. In general, we aim to schedule the execution of the critical path of
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BeJer	  concurrency	  control	  saves	  energy	  

28	  

cilities to them for tracking inter-task dependences. Also,
automatic memory management is applied to versioned ob-
jects to break write-after-read dependences. Versioned vari-
ables may be used as procedure arguments provided they are
cast to type indep, outdep or inoutdep, which describes
side e↵ects of reading, writing or both. The spawn keyword
indicates that calling a task may occur in parallel with the
continuation of the calling procedure, as in Cilk. The sync
keyword blocks a procedure until all children have finished
execution. The loop in Figure 1 corresponds to a two-stage
pipeline where instances of the produce stage may execute
in parallel as there are no dependences between those in-
stances, while instances of the consume stage execute strictly
in order due to the dependence on the inoutdep argument.

Task dataflow is an intuitive programming model where
the pipeline pattern emerges on-the-fly as a side-e↵ect of
the code structure, rather than being designed-in. However,
task dataflow has two limitations with respect to pipeline
parallelism: (i) pipelines must be su�ciently coarse-grained
as every stage invocation is modeled as a separately sched-
uled task, and (ii) each pipeline stage consumes a fixed num-
ber of elements from its predecessor and produces a fixed
number of output elements [6]. This paper will address
both shortcomings by introducing hyperqueues, a program-
ming abstraction of queues for a task based programming
language. Hyperqueues are deterministic and allow the con-
struction of scale-free pipeline parallel programs.

Hyperqueues share commonalities with Cilk++ hyperob-
jects, specifically with reducers [9]. Reducers are special pro-
gram variables that support reduction operations, i.e., they
are identified by a type, an identity element and an asso-
ciative reduction operation. A common example is addition
over integers, but also appending to a list is an associative
operation. The latter was, in fact, the main motivation for
the development of reducers [9]. Reduction operations can
be parallelized by creating duplicates of the reduction vari-
able, called views, which are private to a task. As views are
private, they are accessed without races. When tasks com-
plete, the views are reduced to a single value in such a way
that program order is respected. Moreover, Cilk++ uses a
“special” optimization to reduce views only on task steals, as
opposed to on all spawned tasks. Hyperqueues build on this
property of reducers to perform push operations in parallel
while retaining determinism.

However, hyperqueues also allow concurrent push and pop
operations and are di↵erent in this respect from Cilk++
hyperobjects. To support this behavior, hyperqueues require
a distinct implementation. Views are no longer private but
are shared between a producing task and a consuming task.
This paper shows how to design shared views that are data
race free and how to ensure deterministic parallelism for
programs utilizing hyperqueues.

Using hyperqueues, we parallelize several benchmarks with
less programming e↵ort than using POSIX threads or Thread-
ing Building Blocks (TBB) because synchronization is hid-
den in the runtime system and because the programming
language does not impose a stringent format, as TBB does.
Moreover, the hyperqueue version is scale-free and obtains
the same or up to 30% better performance. It also out-
performs task dataflow languages like [6] because the latter
cannot capture varying numbers of inputs and outputs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the programming model. Section 3 discusses

1 struct data { ... };
2 void consumer(popdep<data> queue) {
3 while( !queue.empty() ) {
4 data d = queue.pop();
5 // ... operate on data ...

6 }
7 }
8 void producer(pushdep<data> queue, int start, int end) {
9 if ( end�start <= 10 ) {

10 for( int n=start; n < end; ++n ) {
11 data d = f(n);
12 queue.push(d);
13 }
14 } else {
15 spawn producer(queue, start , ( start +end)/2);
16 spawn producer(queue, (start+end)/2, end);
17 sync;
18 }
19 }
20 void pipeline ( int total ) {
21 hyperqueue<data> queue;
22 spawn producer((pushdep<data>)queue, 0, total);
23 spawn consumer((popdep<data>)queue);
24 sync;
25 }
Figure 2: The simple pipeline-parallel program of
Figure 1 expressed with the hyperqueue.

the internal representation of hyperqueues in the runtime
system and views. Section 4 discusses how the runtime sys-
tem merges views. Then, Section 5 presents programming
idioms. We present an experimental evaluation in Section 6.
Finally, Section 7 discusses related work and Section 8 con-
cludes this paper.

2. PROGRAMMING MODEL

2.1 The Hyperqueue Abstraction of Queues
Hyperqueues are a programming abstraction for queues.

A queue is an ordered sequence of values. Values are added
to the tail of the sequence using a push method. Values are
removed from the head of the sequence using a pop method.
We define a hyperqueue as a special object in our pro-

gramming language that models a single-producer, single-
consumer queue. Its implementation allows tasks to concur-
rently push and pop values without breaking the semantics
of a single-producer, single-consumer queue, and without
breaking the serializability of the parallel program.
Hyperqueues are defined as variables of type hyperqueue,

which takes a type parameter to describe the type of the val-
ues stored in the queue. Hyperqueues may be passed to pro-
cedures provided they are cast to a type that describes the
access mode of the procedure. This type can be pushdep,
popdep or pushpopdep, to indicate that the spawned pro-
cedure may only push values on the queue, that it may only
pop values from the queue, or that it may do both. A task
with push access mode is not required to push any values,
nor is a task with pop access mode required to pop all val-
ues from the queue. A hyperqueue may be destroyed with
values still inside.
A simple 2-stage pipeline using the hyperqueue is shown in

Figure 2. The procedure pipeline at line 20 creates a hyper-

Swan	  [PACT11]	  Hyperqueues	  express	  
and	  control	  data-‐dependent	  parallelism	  
in	  variable-‐rate	  pipelines	  [SC13]	  
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(b) Positioning of hyperqueues 

1 void Fragment( pushdep<chunk t ⇤>write queue ) {
2 while( more coarse fragments ) {
3 chunk t ⇤ chunk = ...;
4 { // Set up inner pipeline with local queue

5 hyperqueue<chunk t⇤> ⇤ q
6 = new hyperqueue<chunk t ⇤>;
7 spawn FragmentRefine(
8 chunk, (pushdep<chunk t ⇤>)⇤q );
9 spawn DeduplicateAndCompress(

10 (popdep<chunk t ⇤>)⇤q,
11 (pushdep<chunk t ⇤>)write queue );
12 }
13 }
14 sync;
15 }
16 int main() {
17 hyperqueue<chunk t⇤> write queue;
18 spawn Fragment( (pushdep<chunk t⇤>)write queue );
19 spawn Output( (popdep<chunk t⇤>)write queue );
20 sync;
21 }

(c) Hyperqueue implementation of dedup.

Figure 10: Alternative implementation choices for dedup. The graphics (a) and (b) show dynamic instantia-
tions of each pipeline stage, how they are grouped and where collections of data elements are used. Dashed
lines indicate instances of the inner pipeline. (c) Sketch of hyperqueue code according to (b).

Figure 10 (a) shows the dynamic instantiations of all
pipeline stages. Two large chunks have been found, where
the first is further split in three small chunks and the latter
is split two-ways. This graphic demonstrates a shortcoming
of the nested pipeline approach: all the small chunks for a
large chunk must be completed and gathered on a list be-
fore the output stage can proceed. This puts an important
limit to scalability, as the number of small chunks per in-
ner pipeline is typically 500-600 and may run up to 65537,
potentially resulting in long and skewed delays.

Hyperqueues allow consuming elements concurrently to
pushes, removing the wait times of the output stage un-
til large chunks have been fully processed as in the case of
nested pipelines. Moreover, like Cilk++ list reducers, hyper-
queues allow us to construct parts of the list concurrently
and merge list segments as appropriate. This way, all nested
pipelines can push elements on the same hyperqueue and the
write actions become synchronized and ordered between in-
vocations of the nested pipeline. Finally, hyperqueues can be
used directly as a drop-in replacement for lists, as they sup-
port the required push and pop operations (Figure 10 (b)).

Our hyperqueue implementation inserts a local hyperqueue
between the FragmentRefine stage and the Deduplication
stage. Also, all instances of the Deduplication and Com-
press stages that correspond to the same nested pipeline
(large chunk) are merged into a single sequential task. This
design was chosen to coarsen the tasks and reduce dynamic
scheduling overhead (which is absent in the pthreads imple-
mentation). Ample parallelism remains in the program.

Our formulation of dedup follows the original sequential
algorithm, which greatly a↵ects programmer productivity.
Figure 10 (c) shows a sketch, where the main procedure
spawns two tasks Fragment and Output. Fragment calls all
but the output stage in a recursive manner: whenever a
large chunk is constructed, a nested pipeline is created using
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Figure 11: Dedup speedup with various program-
ming models.

two tasks that communicate through a local hyperqueue.
Completed small chunks are produced on the write queue.
In contrast, the TBB version of dedup requires significant
restructuring of the code in order to match the structure
imposed by TBB.
Note that the hyperqueue enforces dependences across

procedure boundaries. This is an e↵ect that is hard to
achieve in Swan, where dataflow dependences can exist only
within the scope of a procedure.
Figure 11 shows speedup for dedup in the pthreads, TBB

and Swan programming models. While Reed et al demon-
strated improved performance of their TBB implementation
relative to the pthreads implementation in PARSEC 2.1 [22],
our evaluation using PARSEC 3.0 shows that the TBB im-
plementation is slower than the pthreads implementation.
The Swan implementation with hyperqueues outperforms
the pthread version by at least 12% and up to 30% in the re-
gion of 6-8 threads. The hyperqueue implementation looses
some of its advantage for 22 threads and higher due to task
granularity and locality issues.
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Task	  dataflow	  and	  locality	  

•  Rich	  seman;c	  informa;on	  available	  to	  the	  
compiler	  and	  run;me	  system	  
– DAG,	  program	  order	  for	  correctness	  and	  
determinism,	  task	  memory	  footprints	  for	  locality	  

•  Opportunity	  to	  make	  memory	  system	  aware	  
of	  working	  sets	  
– Run;me	  explicitly	  manages	  the	  memory	  hierarchy	  
by	  placing	  task	  footprints	  in	  caches	  
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	  Overlooking	  the	  memory	  hierarchy	  
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Figure: EPI while traversing OI of a
L3 Cache sensitive workload.

Observations
1 OI Counts L3 accesses

instead of memory ones.

2 L3 accesses also degrade
energy e�ciency for high OI.

3 Cache Hierarcy consumes up
to 50% of the total
energy.

Ioannis Manousakis and Dimitrios S. Nikolopoulos Measuring and Modeling Energy with BTL

[SBAC-‐PAD’12]	  
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Overlooking	  the	  memory	  hierarchy	  
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Comparison
Access Stride

Results - Comparison

Workload OI EPI Against L3

L3 High 3.9⇥�9 1
Throughput High 1.18⇥�8 3.02
Latency High 5.8⇥�8 14.9

L3 Low 2.4⇥�9 1
Throughput Low 4.0⇥�9 1.6
Latency Low 3.6⇥�8 15

Table: EPI comparison of throughput, latency and L3 sensitive workloads.

Ioannis Manousakis and Dimitrios S. Nikolopoulos Measuring and Modeling Energy with BTL
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Cache	  management	  using	  task	  life;mes	  

32	  
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ECM
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•  Epoch	  quotas:	  cache	  space	  alloca;on	  per	  task	  (best-‐effort)	  
–  SW	  declares	  quota	  from	  task	  footprint	  size	  (ECM	  converts	  to	  ways)	  
–  when	  current	  and	  next	  compete	  è	  guarantee	  minimum	  alloca;on	  

•  Replacement:	  computes	  current	  &	  next	  occupancy	  (per-‐set)	  
–  replace	  from	  reques;ng	  epoch	  when	  set	  is	  full	  (e.g.	  use	  LRU	  bits)	  
–  throJle	  EBP	  (prefetching)	  when	  set	  is	  full	  and	  epoch	  exceeded	  quota.	  

[ICS13]	  
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BeJer	  locality	  cuts	  down	  energy	  consump;on	  
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Jacobi,	  Sparse-‐LU:	  memory-‐intensive	  codes,	  medium	  or	  low	  OI	  
Energy	  savings	  of	  20%-‐30%	  
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Should	  the	  programmer	  care	  about	  
energy-‐efficiency?	  

34	  

Joe	  the	  Plumber	  
Green	  Programmer	  
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	  Energy	  and	  the	  programmer	  
•  Should	  programmers	  go	  back	  to	  half	  a	  century-‐-‐old	  

principles?	  
–  Eliminate	  waste	  
–  Much	  of	  the	  programming	  we	  do	  already	  does	  this	  

•  Load	  balancing	  
•  Communica;on	  or	  synchroniza;on	  removal	  

•  	  Scale-‐free	  programming	  models	  can	  help	  programmers	  
achieve	  this	  
–  Programmer	  expresses	  exact	  parallelism	  and	  locality	  paJerns	  
–  Run;me	  system	  maps	  to	  cores,	  memories	  and	  interconnect	  so	  
as	  to	  avoid	  waste	  

–  Component-‐level	  power	  management	  further	  minimizes	  waste	  

35	  
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The	  “Lernaia	  Hydra”	  
•  Power	  instrumenta;on	  	  is	  inaccurate,	  intrusive,	  coarse-‐grain,…	  

–  SoGware	  is	  at	  the	  mercy	  of	  hardware	  (PMCs,	  sensors,	  voltage	  
regulators,	  everything	  machine-‐specific,…)	  

•  No	  soGware	  standards	  for	  power	  measurement	  and	  management	  
–  How	  would	  power	  knobs	  make	  it	  into	  MPI,	  OpenMP,	  Cilk,	  PGAS,	  or	  

even	  mainstream	  languages?	  
•  What	  if	  a	  power	  cap	  is	  imposed?	  

–  And	  violated?	  
•  Riding	  the	  technology	  curve	  is	  dangerous	  

–  Low	  voltage	  may	  become	  sub-‐threshold	  voltage	  
–  Subthreshold	  voltage	  will	  increase	  soG	  error	  rate	  
–  SoG	  errors	  will	  cause	  failures	  

36	  
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Looking	  forward:	  SCoRPiO	  project	  
•  Compu;ng	  at	  the	  

limits	  of	  energy	  and	  
reliability	  
–  Components	  with	  sub-‐

threshold	  voltage	  	  

•  Embrace	  uncertainty!	  
–  Not	  all	  bits	  in	  memory	  

and	  registers	  are	  equally	  
cri;cal	  	  

–  Applica;on-‐specific	  
quality	  control	  

•  Minimize	  power	  by	  
scaling	  gracefully	  
under	  hardware	  errors	  	  
–  Scale-‐free	  parallel	  

programming	  
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More	  informa;on	  

hJp://www.qub.ac.uk/research-‐centres/HPDC/	  	  
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BlueGene	  on	  the	  Green500	  
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