
School	 of	 EEECS	
HPDC	 Cluster	

Programming	 the	 Energy-‐Efficiency	 of	
High-‐Performance	 Compu;ng	 Systems	

Professor	 Dimitrios	 S.	 Nikolopoulos	
HPDC	 Research	 Cluster,	 Queen’s	 University	 of	 Belfast	

School	 of	 EEECS	
HPDC	 Cluster	

Points	 to	 get	 across	

•  Waste-‐free	 HPC	 soGware	 is	
instrumental	 in	 the	 baJle	
against	 power	

•  Scale-‐freedom	 in	 parallel	
programming	 is	 a	 path	 to	
energy-‐efficiency	

•  Energy	 challenges	 will	
remind	 us	 of	 the	 Hydra	
Lernaia	

	

2	

School	 of	 EEECS	
HPDC	 Cluster	

Energy	 in	 HPC	

0 50 100 150 200 250 300

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

Papers tagged "Power/Energy/HPC" ACM Digital Library

3	

School	 of	 EEECS	
HPDC	 Cluster	

HPC	 has	 lead	 the	 way	 (or	 not?)	

•  The	 history	 of	 BlueGene	
–  Based	 on	 processors	 for	 the	 embedded	 systems	 market	 (PowerPC)	
–  Pioneered	 “scale-‐out”	 idea,	 now	 common	 in	 datacentres	

•  Many	 nodes	 with	 simple	 cores,	 fast	 interconnect	
–  Dominated	 Top-‐500,	 Green-‐500	 list	

•  Embedded	 processors	 are	 now	 commodity	 components	
–  Able	 to	 power	 compe;ng	 supercomputers	 (e.g.	 BSC	 MontBlanc)	

4	

School	 of	 EEECS	
HPDC	 Cluster	

Leader	 or	 laggard?	

5	

School	 of	 EEECS	
HPDC	 Cluster	

Leader	 or	 laggard?	

•  Is	 HPC	 reusing	 or	
discovering?	
–  Processors	
originally	 designed	
for	 the	 mobile	
phones	 market	

–  Clock	 ga;ng,	 DVFS,	
device	 sleep	 states	
well	 known	 for	 20	
years	

6	

School	 of	 EEECS	
HPDC	 Cluster	

What	 can	 HPC	 contribute	 towards	
zero-‐power	 compu:ng?	

7	

School	 of	 EEECS	
HPDC	 Cluster	

The	 challenge	 and	 the	 opportunity	
•  Assume	 that	 currently	 most	 energy-‐efficient	

supercomputer	 sustains	 improvement	 towards	 an	 Exaflop	
–  Will	 need	 2384×	 in	 performance,	 202.7	 MW	

•  Assume	 target	 power	 cap	 of	 25	 MW	
–  Need	 two	 orders	 of	 magnitude	 improvement	 in	 FLOPS/W	
–  Can	 hardware	 achieve	 this	 improvement	 without	 compromising	
the	 power	 target?	

–  If	 systems	 have	 any	 hope	 to	 achieve	 this	 they	 must	 eliminate	
waste	

–  Actual	 power	 cap	 may	 be	 lower	 than	 nominal	 power	
consump;on	

–  Opportuni;es	 for	 soGware!	

8	

School	 of	 EEECS	
HPDC	 Cluster	

Where	 can	 HPC	 make	 the	 difference?	

•  HPC	 has	 been	 leading	 the	 way	 in	 parallel	 programming	
technology	
–  Parallel	 languages,	 compilers,	 run;me	 systems	

•  HPC	 priori;zes	 efficiency	 in	 programming	
– Minimise	 communica;on	
–  Balance	 the	 load	
–  U;lise	 available	 cores	
–  Reduce	 cache	 and	 memory	 footprint	

•  Waste-‐free	 parallel	 programming	 is	 energy-‐efficient	
–  Opportunity	 to	 reduce	 power	 consump:on	
–  Opportunity	 to	 do	 more	 within	 a	 power	 budget	

9	

School	 of	 EEECS	
HPDC	 Cluster	

What	 can	 parallel	 languages	 and	
run:mes	 do	 to	 reduce	 waste?	

10	

School	 of	 EEECS	
HPDC	 Cluster	

If	 parallel	 programs	 were	 scale-‐free	
•  Power	 increasing	 linearly	 with	

ac;ve	 cores	
–  Previously	 dynamic,	 but	 now	
also	 sta;c	 power	

•  Program	 speedup	 lines	 have	
knees	
–  Synchronisa;on,	 conten;on	 for	
resources	 or	 the	 algorithm	 itself	

–  Energy-‐efficient	 programs	
would	 execute	 at	 the	 beginning	
of	 the	 knee	

–  How	 do	 we	 locate	 the	 knee?	
	

Cores	

Sp
ee
du

p	

CT	 opportunity	

CT	 opportunity	

11	

School	 of	 EEECS	
HPDC	 Cluster	

Exploring	 the	 concurrency-‐power	 trade-‐off	

•  Programs	 execute	 dis;nct	 phases	 	
–  Programmer	 annotated	 or	 auto-‐

mined	 from	 ;me	 series	 of	 HPMs	
–  Compute-‐,	 memory-‐	 or	

communica;on-‐bound	

•  Dynamic	 scalability	 predictors	
–  Concurrency	 sweet	 spot	

detec;on	 with	 empirical	
modeling	 [ICS06]	

–  Rigorous	 sta;s;cal	 modeling	
[TPDS08]	

–  Machine	 learning	 approaches	
[EuroPar10]	

–  MPI	 task	 aggrega;on	 [IPDPS10]	

Cores	
Sp
ee
du

p	

CT	 opportunity	

CT	 opportunity	

12	

School	 of	 EEECS	
HPDC	 Cluster	

Scale-‐freedom	 improves	 energy-‐efficiency	
Scale-‐free	 parallel	 programs	 can	 reduce	 their	 power	 budget	
Scale-‐free	 parallel	 programs	 adapt	 to	 power	 caps	

13	

School	 of	 EEECS	
HPDC	 Cluster	

Is	 controlling	 concurrency	 enough?	

14	

School	 of	 EEECS	
HPDC	 Cluster	

Beyond	 scale	 freedom	

Mul;-‐objec;ve	
op;miza;on	 	 [PACT08]:	

– Control	 mul;ple	
power	 knobs	 at	 a	 fine	
granularity	 (per	 task,	
in	 microseconds)	

– Applied	 to	 DCT,	 DVFS	
1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61

0

100

200

Processor Performance (P) States [DVFS]

Av
er

ag
e

En
er

gy
 p

er
 T

as
k

[J
ou

le
s]

Processor DVFS Impact on the Average Task Energy [Multisort]

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61
0

2

4
x 102

Ex
ec

ut
io

n
Ti

m
e

pe
r T

as
k

[m
ic

ro
se

c]

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61
20

40

60

Processor Performance (P) States [DVFS]

Av
er

ag
e

En
er

gy
 p

er
 T

as
k

[J
ou

le
s]

Processor DVFS Impact on the Average Task Energy [Blackscholes]

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61
0.5

1

1.5
x 102

Ex
ec

ut
io

n
Ti

m
e

pe
r T

as
k

[m
ic

ro
se

c]

1

3

4

2

15	

School	 of	 EEECS	
HPDC	 Cluster	

Taming	 locality	 issues	
Original	 DCT	 work	 failed	 to	 capture	 implica;ons	 of	 thread	
migra;on	 	

Example:	 Up	 to	 45%	 execu;on	
;me	 varia;on	 across	 85	
mappings	

16,	 4-‐core	 nodes:	 63	 million	 mappings.	
1000,	 4-‐core	 nodes:	 1043	 mappings.	

4,	 4-‐core	 nodes:	 43,680	 mappings.	

16	

School	 of	 EEECS	
HPDC	 Cluster	

DyNUMA	 training	 using	 ANN	

Op;mize	 for	 concurrency,	 ver;cal	 and	 horizontal	 locality	 	
	 [IISWC12,	 SIGMETRICS	 PER]	 17	

School	 of	 EEECS	
HPDC	 Cluster	

Modeling	 accuracy	

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0

5

10

15

20

25

30

35

Predicted Wall-clock time Measured Wall-clock time
Normalized Prediction

Ti
m

e(
se

co
nd

)

N
or

m
al

iz
ed

 V
al

ue
(%

)

18	

School	 of	 EEECS	
HPDC	 Cluster	

Performance	 on	 TilePro64	

•  Tile64Pro	 OS	 default	 Linux	 mapping	 is	 inefficient	 	
•  More	 concurrency	 	 does	 not	 necessary	 improve	 performance	 	
•  Counter-‐intui;ve	 mappings	 op;mize	 energy-‐efficiency	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

NPB.FT.1	 AMG.Relax	 AMG.Matvec	

N
or
m
al
ize

d	
Ti
m
e,
	 E
DP

	 	 (
%
)	

Wall-‐clock	 Time	 EDP	

19	

School	 of	 EEECS	
HPDC	 Cluster	

Is	 controlling	 concurrency,	 mapping	 and	
waste	 at	 one	 program	 level	 enough?	
	

20	

School	 of	 EEECS	
HPDC	 Cluster	

Energy-‐Aware	 Hybrid	 Programming	

Slack	 dispersion	 algorithms	 [IPDPS10,TPDS13]	

Task	 i	

Task	 j	

Task	 k	

1 2 2 3 1 3 1 2

1 2 2 3 3 1 1 2

1 2 2 3 1 3 1 2

21	

School	 of	 EEECS	
HPDC	 Cluster	

Cri;cal	 path	 based	 modeling	

Predic;ng	 ;me	 vs.	 predic;ng	 scaling	 func;on	

ti = min
1≤ thr ≤X⋅Y

ti, j,thr
j=1

M

∑

tc =max1≤i≤N
min

1≤ thr ≤X⋅Y
ti, j,thr

j=1

M

∑

22	

School	 of	 EEECS	
HPDC	 Cluster	

Time	 modeling	 enables	 slack	 dispersion	

Slack	 dispersing	 DCT&DVFS	 [IPDPS10,TPDS13]	

Use	 cri;cal	 path	 ;me	 to	 determine	 slack	 (essen;ally	 imbalance)	

Time	 constraint:	

Energy	 constraint:	

Δti
slack = tc − ti − ti

comm − tdvfs

Δtijk ≤ Δti
slack

1≤ j≤M
∑

tijk fk ≤ ti
1≤ j≤M
∑ f0

23	

School	 of	 EEECS	
HPDC	 Cluster	

Performance	 Evalua;on	

Consistently	 significant	 energy	 savings	 with	 weak	 and	 strong	 scaling
24	

School	 of	 EEECS	
HPDC	 Cluster	

Have	 we	 solved	 our	 problems?	

25	

School	 of	 EEECS	
HPDC	 Cluster	

How	 much	 parallelism	 is	 (really)	 there	 ?	

26	

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

(a) Nested pipelines

lists

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

local
queue

local
queue

write
queue

(b) Positioning of hyperqueues

1 void Fragment(pushdep<chunk t ⇤>write queue) {
2 while(more coarse fragments) {
3 chunk t ⇤ chunk = ...;
4 { // Set up inner pipeline with local queue

5 hyperqueue<chunk t⇤> ⇤ q
6 = new hyperqueue<chunk t ⇤>;
7 spawn FragmentRefine(
8 chunk, (pushdep<chunk t ⇤>)⇤q);
9 spawn DeduplicateAndCompress(

10 (popdep<chunk t ⇤>)⇤q,
11 (pushdep<chunk t ⇤>)write queue);
12 }
13 }
14 sync;
15 }
16 int main() {
17 hyperqueue<chunk t⇤> write queue;
18 spawn Fragment((pushdep<chunk t⇤>)write queue);
19 spawn Output((popdep<chunk t⇤>)write queue);
20 sync;
21 }

(c) Hyperqueue implementation of dedup.

Figure 10: Alternative implementation choices for dedup. The graphics (a) and (b) show dynamic instantia-
tions of each pipeline stage, how they are grouped and where collections of data elements are used. Dashed
lines indicate instances of the inner pipeline. (c) Sketch of hyperqueue code according to (b).

Figure 10 (a) shows the dynamic instantiations of all
pipeline stages. Two large chunks have been found, where
the first is further split in three small chunks and the latter
is split two-ways. This graphic demonstrates a shortcoming
of the nested pipeline approach: all the small chunks for a
large chunk must be completed and gathered on a list be-
fore the output stage can proceed. This puts an important
limit to scalability, as the number of small chunks per in-
ner pipeline is typically 500-600 and may run up to 65537,
potentially resulting in long and skewed delays.

Hyperqueues allow consuming elements concurrently to
pushes, removing the wait times of the output stage un-
til large chunks have been fully processed as in the case of
nested pipelines. Moreover, like Cilk++ list reducers, hyper-
queues allow us to construct parts of the list concurrently
and merge list segments as appropriate. This way, all nested
pipelines can push elements on the same hyperqueue and the
write actions become synchronized and ordered between in-
vocations of the nested pipeline. Finally, hyperqueues can be
used directly as a drop-in replacement for lists, as they sup-
port the required push and pop operations (Figure 10 (b)).

Our hyperqueue implementation inserts a local hyperqueue
between the FragmentRefine stage and the Deduplication
stage. Also, all instances of the Deduplication and Com-
press stages that correspond to the same nested pipeline
(large chunk) are merged into a single sequential task. This
design was chosen to coarsen the tasks and reduce dynamic
scheduling overhead (which is absent in the pthreads imple-
mentation). Ample parallelism remains in the program.

Our formulation of dedup follows the original sequential
algorithm, which greatly a↵ects programmer productivity.
Figure 10 (c) shows a sketch, where the main procedure
spawns two tasks Fragment and Output. Fragment calls all
but the output stage in a recursive manner: whenever a
large chunk is constructed, a nested pipeline is created using

0"

1"

2"

3"

4"

5"

6"

7"

0" 5" 10" 15" 20" 25" 30" 35"

Sp
ee
du

p&

Number&of&cores&

Pthreads" TBB"

Objects" Hyperqueue"

Figure 11: Dedup speedup with various program-
ming models.

two tasks that communicate through a local hyperqueue.
Completed small chunks are produced on the write queue.
In contrast, the TBB version of dedup requires significant
restructuring of the code in order to match the structure
imposed by TBB.
Note that the hyperqueue enforces dependences across

procedure boundaries. This is an e↵ect that is hard to
achieve in Swan, where dataflow dependences can exist only
within the scope of a procedure.
Figure 11 shows speedup for dedup in the pthreads, TBB

and Swan programming models. While Reed et al demon-
strated improved performance of their TBB implementation
relative to the pthreads implementation in PARSEC 2.1 [22],
our evaluation using PARSEC 3.0 shows that the TBB im-
plementation is slower than the pthreads implementation.
The Swan implementation with hyperqueues outperforms
the pthread version by at least 12% and up to 30% in the re-
gion of 6-8 threads. The hyperqueue implementation looses
some of its advantage for 22 threads and higher due to task
granularity and locality issues.

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM

xTRSM

xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK

xSYRK

xGEMMxGEMM xGEMM xGEMM xGEMM xGEMM

xGEMM xGEMM xGEMM

xGEMM

Fig. 2. Task graph of tile Cholesky factorization (5⇥ 5 tiles).

and multiGPU systems that can enable applications to fully exploit the power
that each of the hybrid components o↵ers.

4.1 Hybridization of DLA algorithms

We split the computation into sub-tasks and schedule their execution over the
system’s hybrid components. The splitting itself is simple, as it is based on split-
ting BLAS operations. The challenges are choosing the granularity (and shape)
of the splitting and the subsequent scheduling of the sub-tasks. It is desired
that the splitting and scheduling (1) allow for asynchronous execution and load
balance among the hybrid components, and (2) harness the strengths of the com-
ponents of a hybrid architecture by properly matching them to algorithmic/task
requirements. We call this process hybridization of DLA algorithms. We have
developed hybrid algorithms for both one-sided [15, 16] and two-sided factor-
izations [6]. Those implementations have been released in the current MAGMA
library [17]. The task granularity is one of the key for an e�cient and balanced
execution. It is parameterized and tuned empirically at software installation time
[18].

4.2 Scheduling of hybrid DLA algorithms

The scheduling on a parallel machine is crucial for the e�cient execution of an
algorithm. In general, we aim to schedule the execution of the critical path of

©	 Ltaief	 et	 al.,	 LAPACK	 Note	 #223	 	

School	 of	 EEECS	
HPDC	 Cluster	

Emerging	 scale-‐free	 programming	 models	

•  Annotate	 task	 memory	
footprint	 and	 side-‐effect	

input (rd-only),
inout (rw), output
(wr-only)!

•  Discover	 task	 dependences	
at	 run-‐;me	
–  dynamically	 extract	 task	
parallelism	

–  schedule	 tasks	 out-‐of-‐order	
–  E.g.	 “depend”	 clause	 in	
OpenMP	 4.0	 RC2	 (March	
2013)	

27	

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM

xTRSM

xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK

xSYRK

xGEMMxGEMM xGEMM xGEMM xGEMM xGEMM

xGEMM xGEMM xGEMM

xGEMM

Fig. 2. Task graph of tile Cholesky factorization (5⇥ 5 tiles).

and multiGPU systems that can enable applications to fully exploit the power
that each of the hybrid components o↵ers.

4.1 Hybridization of DLA algorithms

We split the computation into sub-tasks and schedule their execution over the
system’s hybrid components. The splitting itself is simple, as it is based on split-
ting BLAS operations. The challenges are choosing the granularity (and shape)
of the splitting and the subsequent scheduling of the sub-tasks. It is desired
that the splitting and scheduling (1) allow for asynchronous execution and load
balance among the hybrid components, and (2) harness the strengths of the com-
ponents of a hybrid architecture by properly matching them to algorithmic/task
requirements. We call this process hybridization of DLA algorithms. We have
developed hybrid algorithms for both one-sided [15, 16] and two-sided factor-
izations [6]. Those implementations have been released in the current MAGMA
library [17]. The task granularity is one of the key for an e�cient and balanced
execution. It is parameterized and tuned empirically at software installation time
[18].

4.2 Scheduling of hybrid DLA algorithms

The scheduling on a parallel machine is crucial for the e�cient execution of an
algorithm. In general, we aim to schedule the execution of the critical path of

©	 Ltaief	 et	 al.,	 LAPACK	 Note	 #223	 	

School	 of	 EEECS	
HPDC	 Cluster	

BeJer	 concurrency	 control	 saves	 energy	

28	

cilities to them for tracking inter-task dependences. Also,
automatic memory management is applied to versioned ob-
jects to break write-after-read dependences. Versioned vari-
ables may be used as procedure arguments provided they are
cast to type indep, outdep or inoutdep, which describes
side e↵ects of reading, writing or both. The spawn keyword
indicates that calling a task may occur in parallel with the
continuation of the calling procedure, as in Cilk. The sync
keyword blocks a procedure until all children have finished
execution. The loop in Figure 1 corresponds to a two-stage
pipeline where instances of the produce stage may execute
in parallel as there are no dependences between those in-
stances, while instances of the consume stage execute strictly
in order due to the dependence on the inoutdep argument.

Task dataflow is an intuitive programming model where
the pipeline pattern emerges on-the-fly as a side-e↵ect of
the code structure, rather than being designed-in. However,
task dataflow has two limitations with respect to pipeline
parallelism: (i) pipelines must be su�ciently coarse-grained
as every stage invocation is modeled as a separately sched-
uled task, and (ii) each pipeline stage consumes a fixed num-
ber of elements from its predecessor and produces a fixed
number of output elements [6]. This paper will address
both shortcomings by introducing hyperqueues, a program-
ming abstraction of queues for a task based programming
language. Hyperqueues are deterministic and allow the con-
struction of scale-free pipeline parallel programs.

Hyperqueues share commonalities with Cilk++ hyperob-
jects, specifically with reducers [9]. Reducers are special pro-
gram variables that support reduction operations, i.e., they
are identified by a type, an identity element and an asso-
ciative reduction operation. A common example is addition
over integers, but also appending to a list is an associative
operation. The latter was, in fact, the main motivation for
the development of reducers [9]. Reduction operations can
be parallelized by creating duplicates of the reduction vari-
able, called views, which are private to a task. As views are
private, they are accessed without races. When tasks com-
plete, the views are reduced to a single value in such a way
that program order is respected. Moreover, Cilk++ uses a
“special” optimization to reduce views only on task steals, as
opposed to on all spawned tasks. Hyperqueues build on this
property of reducers to perform push operations in parallel
while retaining determinism.

However, hyperqueues also allow concurrent push and pop
operations and are di↵erent in this respect from Cilk++
hyperobjects. To support this behavior, hyperqueues require
a distinct implementation. Views are no longer private but
are shared between a producing task and a consuming task.
This paper shows how to design shared views that are data
race free and how to ensure deterministic parallelism for
programs utilizing hyperqueues.

Using hyperqueues, we parallelize several benchmarks with
less programming e↵ort than using POSIX threads or Thread-
ing Building Blocks (TBB) because synchronization is hid-
den in the runtime system and because the programming
language does not impose a stringent format, as TBB does.
Moreover, the hyperqueue version is scale-free and obtains
the same or up to 30% better performance. It also out-
performs task dataflow languages like [6] because the latter
cannot capture varying numbers of inputs and outputs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the programming model. Section 3 discusses

1 struct data { ... };
2 void consumer(popdep<data> queue) {
3 while(!queue.empty()) {
4 data d = queue.pop();
5 // ... operate on data ...

6 }
7 }
8 void producer(pushdep<data> queue, int start, int end) {
9 if (end�start <= 10) {

10 for(int n=start; n < end; ++n) {
11 data d = f(n);
12 queue.push(d);
13 }
14 } else {
15 spawn producer(queue, start , (start +end)/2);
16 spawn producer(queue, (start+end)/2, end);
17 sync;
18 }
19 }
20 void pipeline (int total) {
21 hyperqueue<data> queue;
22 spawn producer((pushdep<data>)queue, 0, total);
23 spawn consumer((popdep<data>)queue);
24 sync;
25 }
Figure 2: The simple pipeline-parallel program of
Figure 1 expressed with the hyperqueue.

the internal representation of hyperqueues in the runtime
system and views. Section 4 discusses how the runtime sys-
tem merges views. Then, Section 5 presents programming
idioms. We present an experimental evaluation in Section 6.
Finally, Section 7 discusses related work and Section 8 con-
cludes this paper.

2. PROGRAMMING MODEL

2.1 The Hyperqueue Abstraction of Queues
Hyperqueues are a programming abstraction for queues.

A queue is an ordered sequence of values. Values are added
to the tail of the sequence using a push method. Values are
removed from the head of the sequence using a pop method.
We define a hyperqueue as a special object in our pro-

gramming language that models a single-producer, single-
consumer queue. Its implementation allows tasks to concur-
rently push and pop values without breaking the semantics
of a single-producer, single-consumer queue, and without
breaking the serializability of the parallel program.
Hyperqueues are defined as variables of type hyperqueue,

which takes a type parameter to describe the type of the val-
ues stored in the queue. Hyperqueues may be passed to pro-
cedures provided they are cast to a type that describes the
access mode of the procedure. This type can be pushdep,
popdep or pushpopdep, to indicate that the spawned pro-
cedure may only push values on the queue, that it may only
pop values from the queue, or that it may do both. A task
with push access mode is not required to push any values,
nor is a task with pop access mode required to pop all val-
ues from the queue. A hyperqueue may be destroyed with
values still inside.
A simple 2-stage pipeline using the hyperqueue is shown in

Figure 2. The procedure pipeline at line 20 creates a hyper-

Swan	 [PACT11]	 Hyperqueues	 express	
and	 control	 data-‐dependent	 parallelism	
in	 variable-‐rate	 pipelines	 [SC13]	

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

(a) Nested pipelines

lists

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

local
queue

local
queue

write
queue

(b) Positioning of hyperqueues

1 void Fragment(pushdep<chunk t ⇤>write queue) {
2 while(more coarse fragments) {
3 chunk t ⇤ chunk = ...;
4 { // Set up inner pipeline with local queue

5 hyperqueue<chunk t⇤> ⇤ q
6 = new hyperqueue<chunk t ⇤>;
7 spawn FragmentRefine(
8 chunk, (pushdep<chunk t ⇤>)⇤q);
9 spawn DeduplicateAndCompress(

10 (popdep<chunk t ⇤>)⇤q,
11 (pushdep<chunk t ⇤>)write queue);
12 }
13 }
14 sync;
15 }
16 int main() {
17 hyperqueue<chunk t⇤> write queue;
18 spawn Fragment((pushdep<chunk t⇤>)write queue);
19 spawn Output((popdep<chunk t⇤>)write queue);
20 sync;
21 }

(c) Hyperqueue implementation of dedup.

Figure 10: Alternative implementation choices for dedup. The graphics (a) and (b) show dynamic instantia-
tions of each pipeline stage, how they are grouped and where collections of data elements are used. Dashed
lines indicate instances of the inner pipeline. (c) Sketch of hyperqueue code according to (b).

Figure 10 (a) shows the dynamic instantiations of all
pipeline stages. Two large chunks have been found, where
the first is further split in three small chunks and the latter
is split two-ways. This graphic demonstrates a shortcoming
of the nested pipeline approach: all the small chunks for a
large chunk must be completed and gathered on a list be-
fore the output stage can proceed. This puts an important
limit to scalability, as the number of small chunks per in-
ner pipeline is typically 500-600 and may run up to 65537,
potentially resulting in long and skewed delays.

Hyperqueues allow consuming elements concurrently to
pushes, removing the wait times of the output stage un-
til large chunks have been fully processed as in the case of
nested pipelines. Moreover, like Cilk++ list reducers, hyper-
queues allow us to construct parts of the list concurrently
and merge list segments as appropriate. This way, all nested
pipelines can push elements on the same hyperqueue and the
write actions become synchronized and ordered between in-
vocations of the nested pipeline. Finally, hyperqueues can be
used directly as a drop-in replacement for lists, as they sup-
port the required push and pop operations (Figure 10 (b)).

Our hyperqueue implementation inserts a local hyperqueue
between the FragmentRefine stage and the Deduplication
stage. Also, all instances of the Deduplication and Com-
press stages that correspond to the same nested pipeline
(large chunk) are merged into a single sequential task. This
design was chosen to coarsen the tasks and reduce dynamic
scheduling overhead (which is absent in the pthreads imple-
mentation). Ample parallelism remains in the program.

Our formulation of dedup follows the original sequential
algorithm, which greatly a↵ects programmer productivity.
Figure 10 (c) shows a sketch, where the main procedure
spawns two tasks Fragment and Output. Fragment calls all
but the output stage in a recursive manner: whenever a
large chunk is constructed, a nested pipeline is created using

0"

1"

2"

3"

4"

5"

6"

7"

0" 5" 10" 15" 20" 25" 30" 35"

Sp
ee
du

p&

Number&of&cores&

Pthreads" TBB"

Objects" Hyperqueue"

Figure 11: Dedup speedup with various program-
ming models.

two tasks that communicate through a local hyperqueue.
Completed small chunks are produced on the write queue.
In contrast, the TBB version of dedup requires significant
restructuring of the code in order to match the structure
imposed by TBB.
Note that the hyperqueue enforces dependences across

procedure boundaries. This is an e↵ect that is hard to
achieve in Swan, where dataflow dependences can exist only
within the scope of a procedure.
Figure 11 shows speedup for dedup in the pthreads, TBB

and Swan programming models. While Reed et al demon-
strated improved performance of their TBB implementation
relative to the pthreads implementation in PARSEC 2.1 [22],
our evaluation using PARSEC 3.0 shows that the TBB im-
plementation is slower than the pthreads implementation.
The Swan implementation with hyperqueues outperforms
the pthread version by at least 12% and up to 30% in the re-
gion of 6-8 threads. The hyperqueue implementation looses
some of its advantage for 22 threads and higher due to task
granularity and locality issues.

School	 of	 EEECS	
HPDC	 Cluster	

Task	 dataflow	 and	 locality	

•  Rich	 seman;c	 informa;on	 available	 to	 the	
compiler	 and	 run;me	 system	
– DAG,	 program	 order	 for	 correctness	 and	
determinism,	 task	 memory	 footprints	 for	 locality	

•  Opportunity	 to	 make	 memory	 system	 aware	
of	 working	 sets	
– Run;me	 explicitly	 manages	 the	 memory	 hierarchy	
by	 placing	 task	 footprints	 in	 caches	

29	

School	 of	 EEECS	
HPDC	 Cluster	

	 Overlooking	 the	 memory	 hierarchy	

30	

Experimental Setup
Microbenchmarks

Bottomline
Conclusions

Methodology
Microbenchmarks
Comparison
Access Stride

Results - L3 Cache Sensitive Kernels

6/0 6/1 6/2 6/3 6/4 6/5 6/6 5/6 4/6 3/6 2/6 1/6 0/6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−9 Energy Per Instruction for Various Operational Intensities

Operational Intensity (Byte / Arithmetic)

D
yn

a
m

ic
 E

n
e

rg
y

p
e

r
In

st
ru

ct
io

n
 (

J/
I)

CPU
Cache

Figure: EPI while traversing OI of a
L3 Cache sensitive workload.

Observations
1 OI Counts L3 accesses

instead of memory ones.

2 L3 accesses also degrade
energy e�ciency for high OI.

3 Cache Hierarcy consumes up
to 50% of the total
energy.

Ioannis Manousakis and Dimitrios S. Nikolopoulos Measuring and Modeling Energy with BTL

[SBAC-‐PAD’12]	

School	 of	 EEECS	
HPDC	 Cluster	

Overlooking	 the	 memory	 hierarchy	

31	

Experimental Setup
Microbenchmarks

Bottomline
Conclusions

Methodology
Microbenchmarks
Comparison
Access Stride

Results - Comparison

Workload OI EPI Against L3

L3 High 3.9⇥�9 1
Throughput High 1.18⇥�8 3.02
Latency High 5.8⇥�8 14.9

L3 Low 2.4⇥�9 1
Throughput Low 4.0⇥�9 1.6
Latency Low 3.6⇥�8 15

Table: EPI comparison of throughput, latency and L3 sensitive workloads.

Ioannis Manousakis and Dimitrios S. Nikolopoulos Measuring and Modeling Energy with BTL

School	 of	 EEECS	
HPDC	 Cluster	

Cache	 management	 using	 task	 life;mes	

32	

curr?

+ +

= next?=

Tags Data Tags Data Tags Data Tags Data

Epoch
Address

3

2

1

Curr. Epoch

Curr. Quota

Next Quota

ECM
Replacement

Decisions

•  Epoch	 quotas:	 cache	 space	 alloca;on	 per	 task	 (best-‐effort)	
–  SW	 declares	 quota	 from	 task	 footprint	 size	 (ECM	 converts	 to	 ways)	
–  when	 current	 and	 next	 compete	 è	 guarantee	 minimum	 alloca;on	

•  Replacement:	 computes	 current	 &	 next	 occupancy	 (per-‐set)	
–  replace	 from	 reques;ng	 epoch	 when	 set	 is	 full	 (e.g.	 use	 LRU	 bits)	
–  throJle	 EBP	 (prefetching)	 when	 set	 is	 full	 and	 epoch	 exceeded	 quota.	

[ICS13]	

School	 of	 EEECS	
HPDC	 Cluster	

BeJer	 locality	 cuts	 down	 energy	 consump;on	

33	

Jacobi,	 Sparse-‐LU:	 memory-‐intensive	 codes,	 medium	 or	 low	 OI	
Energy	 savings	 of	 20%-‐30%	

School	 of	 EEECS	
HPDC	 Cluster	

Should	 the	 programmer	 care	 about	
energy-‐efficiency?	

34	

Joe	 the	 Plumber	
Green	 Programmer	

School	 of	 EEECS	
HPDC	 Cluster	

	 Energy	 and	 the	 programmer	
•  Should	 programmers	 go	 back	 to	 half	 a	 century-‐-‐old	

principles?	
–  Eliminate	 waste	
–  Much	 of	 the	 programming	 we	 do	 already	 does	 this	

•  Load	 balancing	
•  Communica;on	 or	 synchroniza;on	 removal	

•  	 Scale-‐free	 programming	 models	 can	 help	 programmers	
achieve	 this	
–  Programmer	 expresses	 exact	 parallelism	 and	 locality	 paJerns	
–  Run;me	 system	 maps	 to	 cores,	 memories	 and	 interconnect	 so	
as	 to	 avoid	 waste	

–  Component-‐level	 power	 management	 further	 minimizes	 waste	

35	

School	 of	 EEECS	
HPDC	 Cluster	

The	 “Lernaia	 Hydra”	
•  Power	 instrumenta;on	 	 is	 inaccurate,	 intrusive,	 coarse-‐grain,…	

–  SoGware	 is	 at	 the	 mercy	 of	 hardware	 (PMCs,	 sensors,	 voltage	
regulators,	 everything	 machine-‐specific,…)	

•  No	 soGware	 standards	 for	 power	 measurement	 and	 management	
–  How	 would	 power	 knobs	 make	 it	 into	 MPI,	 OpenMP,	 Cilk,	 PGAS,	 or	

even	 mainstream	 languages?	
•  What	 if	 a	 power	 cap	 is	 imposed?	

–  And	 violated?	
•  Riding	 the	 technology	 curve	 is	 dangerous	

–  Low	 voltage	 may	 become	 sub-‐threshold	 voltage	
–  Subthreshold	 voltage	 will	 increase	 soG	 error	 rate	
–  SoG	 errors	 will	 cause	 failures	

36	

School	 of	 EEECS	
HPDC	 Cluster	

Looking	 forward:	 SCoRPiO	 project	
•  Compu;ng	 at	 the	

limits	 of	 energy	 and	
reliability	
–  Components	 with	 sub-‐

threshold	 voltage	 	

•  Embrace	 uncertainty!	
–  Not	 all	 bits	 in	 memory	

and	 registers	 are	 equally	
cri;cal	 	

–  Applica;on-‐specific	
quality	 control	

•  Minimize	 power	 by	
scaling	 gracefully	
under	 hardware	 errors	 	
–  Scale-‐free	 parallel	

programming	
	

37	

School	 of	 EEECS	
HPDC	 Cluster	

Acknowledgments	

38	

School	 of	 EEECS	
HPDC	 Cluster	

Our	 resources	

39	

School	 of	 EEECS	
HPDC	 Cluster	

More	 informa;on	

hJp://www.qub.ac.uk/research-‐centres/HPDC/	 	

40	

School	 of	 EEECS	
HPDC	 Cluster	

BlueGene	 on	 the	 Green500	

0

500

1000

1500

2000

2500

3000

N
ov

-0
7

Ja
n-

08

M
ar

-0
8

M
ay

-0
8

Ju
l-0

8

S
ep

-0
8

N
ov

-0
8

Ja
n-

09

M
ar

-0
9

M
ay

-0
9

Ju
l-0

9

S
ep

-0
9

N
ov

-0
9

Ja
n-

10

M
ar

-1
0

M
ay

-1
0

Ju
l-1

0

S
ep

-1
0

N
ov

-1
0

Ja
n-

11

M
ar

-1
1

M
ay

-1
1

Ju
l-1

1

S
ep

-1
1

N
ov

-1
1

Ja
n-

12

M
ar

-1
2

M
ay

-1
2

Ju
l-1

2

S
ep

-1
2

N
ov

-1
2

M
FL

O
PS

 p
er

 W
at

t

BlueGene and the Green-500 List

BlueGene/L-P-Q

Peak Green-500

41	

