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L

20 MW power limit (exascale extrapolation of Tianhe-2: 1 GW)

Conventional saving approaches potentially insufficient (DVFS,
power/clock gating, ...)

@ Unconventional methods on the rise, e.g. approximate computing,
Near-Threshold Voltage computation (NTC)

But many yield high(er) computational error rates

Need to examine code susceptibility to errors (and potential energy
gains) when using NTC
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Near-Threshold Voltage Computation L.

Run hardware below specification (closer to threshold voltage than
normal —i.e. super-threshold— operation)

@ Power saving potential of 10 — 50x

@ Decreases performance by 5 — 10x

@ Overall energy reductions between 2 and 5x
°

Increases probability of errors
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NTC Implications @

@ Need to deal with higher error rates

e many codes require exact computation
e some are tolerant, but not to all kinds of errors

@ iterative solvers
@ signal processing codes

@ Need to deal with performance degradation
e parallelism
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Fault Classes k4

e Bit flips in one form or another (e.g. functional units,
registers/caches/memory; data/program)
@ Software and hardware affected in different ways

@ no impact
e data corruption

@ looping
@ non-silent: detectable without application knowledge

@ silent: not detectable without application knowledge

o other (segmentation faults, illegal instructions, ...)
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Code Significance ©

@ Measure of susceptibility of code to errors and effect on end result

@ Also data can have significance
o ldeas:

e Is code significance variable?

o Is there a need for selectively protecting portions of data or code?

e Can we run code portions on high-power but reliable, and low-power
but unreliable hardware to save energy?
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Example: Jacobi ©

@ lterative solver for linear equation systems
o Well-studied

o Computes

1
Z(k'H) =w fbi — Z aijxf +(1— W)%k (1)

x.
Gii Gz

laii| > |al. (2)
J#i
@ Shows varying significance depending on affected data component,
time and input data
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Significance Depending on lteration L]
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Figure: Relative run time compared to correct Jacobi run for various error times.
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Significance Depending on Location Q L]
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Figure: Relative run time compared to correct Jacobi run for various error
locations in A.
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Experiment Methodology H

@ Hardware: quad-socket Intel Xeon E5-4650 Sandy Bridge
@ Simulate LLC-resident Jacobi running with NTC
e simulate errors
@ single bit flips in various bit positions, elements, Jacobi iterations
e Simulate power/performance effects

e compare 1 reliable to 16 unreliable cores, same power footprint
@ examine both extremes of performance degradation: 5 — 10x
@ obtain Intel RAPL data and correct it with regard to NTC

@ Analyze effect on run time and energy consumption

@ Evaluate significance of Jacobi with regard to error properties
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Sandy Bridge Power Consumption 2
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Figure: Power consumption per number of cores for weakly scaling parallel Jacobi
runs.
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16 Unreliable vs. 1 Reliable Core M
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Figure: Energy and time savings over correct, sequential Jacobi for 16 unreliable
cores.
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16 Unreliable vs. 16 Reliable Cores M
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Figure: Energy and time savings over correct, parallel Jacobi for 16 unreliable
cores.
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Significance Depending on lteration L]
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Figure: Relative run time compared to correct Jacobi run for various error times.
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Significance-driven Executi &
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Figure: Energy savings when switching from NTC to reliable hardware during
execution.
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Significance-driven Executi &
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Figure: Time savings when switching from NTC to reliable hardware during
execution.
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Conclusion and Future Work H

@ Significance of code and data can be established

@ Proof-of-concept: Jacobi
o Categorization of effects of bit flips
@ none loss in energy or time, no protection necessary
@ observable loss in energy or time, protection optional
e divergence, protection mandatory
e significance variation too small to justify running late iterations on
reliable hardware
e Future work:
e analytic/automatic evaluation of code significance
e examine more codes
o explore potential protection mechanisms

Thank you!
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