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Power/Energy Challenge — Green HPC

« Power has become a critical concern for HPC/supercomputing
— Impacts operational costs, reliability, correctness
— End-to-end integrated power/energy management essential

* Increasing scale towards exascale
— Using existing technology would require gigawatt??

* Nuclear reactor scale?? } Target < 20MW !!

« > $2.5B annual power cost

Worldwide IT Spending on Servers, Power and Cooling,
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Modern Science & Society Transformed by
Compute & Data

« New Paradigms & Practices of Science
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Clearly, modern instruments/experiments/...
are producing Big Data!!
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Scientific Discovery through Simulations

« Scientific simulations running on high-end computing systems generate
huge amounts of datal

— If a single core produces 2MB/minute on average, one of these machines could
generate simulation data between ~170TB per hour -> ~700PB per day ->
~1.4EB per year

» Successful scientific discovery depends on a comprehensive understanding
of this enormous simulation data

How we enable the computation scientists to
efficiently manage and explore extreme scale
data: “find the needles in haystack” ?7?




Challenges Faced by Traditional HPC Data Pipelines

Storage

- Data analysis challenge Servers
« Can current data mining, manipulation S‘m“'a“°”Ra$ata
and visualization algorithms still work Simulation Analysiisulization
effectively on extreme scale machine? Machines @* Clusters
° I/O Cha"enge Simulation Raw Data 8

* Increasing performance gap: disks are

, Figure. Traditional data analysis pipeline
outpaced by computing speed

Data movement challenge

« Lots of data movement between simulation and analysis machines, between
coupled mutli-physics simulation components -> longer latencies

« Improving data locality is critical: do work where the data resides!

Energy challenge

« Future extreme systems are designed to have low-power chips — however,
much greater power consumption will be due to memory and data movement!

The costs of data movement are increasing and dominating!



The Cost of Data Movement

* 40-50% energy spent in off-chip memory hierarchy!!

[Lefurgy, IEEE Computer’'03]
* The energy cost of moving data is

* Moving data between a significant concern

node memory and

FLOPs will cost less than
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Rethinking the Data Management Pipeline —
In-Situ Data Analytics

B simulation M analysis

« Location of analysis compute
resources . . . .
— Same cores as the simulation . . . .

— Dedicated cores on the same node shared cores

dedicated cores on same node

Servers
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In-situ data staging and dedicated separate nodes

execution of analytic in
parallel (on different cores)




Power Behavior of In-situ Analytics Pipeline

e« Combustion simulation workflow with an in-situ
data analytics pipeline
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In-situ DataAnalysis as Part of S3D
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Example: Simulation + Data Analysis Workflow

* Modeling data placement and data paths
— Deep memory hierarchy

* Modeling in-situ analysis choices (cores sharing)
« Opportunities for speculation '



‘ Data Staging over Deep Memory Hierarchy

« Small DRAM capacity per core — even aggregated memory on dedicated
nodes can hardly keep all coupled data (given the ratio of resource
allocations for compute nodes and dedicated nodes)

Hybrid Staging

@ Simulation cores

« Spans horizontally across .
Primary resources

@© Data staging and processing cores |
|

compute nodes

Secondary resources
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‘ Data Staging over Deep Memory Hierarchy

« Small DRAM capacity per core — even aggregated memory on dedicated
nodes can hardly keep all coupled data (given the ratio of resource
allocations for compute nodes and dedicated nodes)

Hybrid Staging

« Spans horizontally across simulation data staging data analysis
compute nodes S)S)S)S l SISISIS

« Spans vertically across the multi- §/5)S)S $)S)S)S
level memory hierarchy, e.qg. ( DRAM )«

DRAM/NVRAM/SSD, to extend

the capacity of in-memory data ’CSSD )

NVRAM

staging

( HDD )«



‘ Synthetic Workflow for Understand Relative Behaviors

N simulation steps
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« Data analysis pipeline (e.g., S3D+Topology analysis)
« Synthetic kernels to evaluation relative behaviors

* Potential use of speculative data movement
— Out-of-the-core data movement vs. traditional speculation at CPU level



Understanding Behaviors and Tradeoffs

* Performance and Energy/Power
« Limitations when “viability zones” are exclusive

Energy/Power
Performance Efficiency

viability zone viability zone



Understanding Behaviors and Tradeoffs

« Quality/accuracy of the solution
— E.g., single/double precision, convergence values, AMR codes, etc.

* Frequency of analysis to represent quality of the solution

Quality of the solution

Energy/Power
Performance Efficiency

viability zone viability zone



Evaluation Methodology

« Evaluation framework (single node)

— Customizable multi-threaded framework which takes care of the
workflow synchronization

— Can run different kernel/applications as the simulation and
analysis are customizable

« Synthetic kernels to evaluation relative behaviors
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— Word finding in analysis steps
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Computational And data-enabled Platform for
Energy efficiency Research (CAPER)

* NSF funded research instrument

« SyperMicro SYS-4027GR-TRT (support up to 8 GPUs
concurrently)
« Phase 1

— 8 servers with 2 Intel Xeon Ivybridge E5-2650v2 (16
cores)

— 128GB of DRAM

— 1TB of PCle Flash-based NVRAM (Fusion-io iodrive2)
— 2TB of SSD (RAID)

— 4TB of hard disk (RAID)

— Intel Xeon Phi 7120P

— Infiniband FDR and 10G Ethernet

* Phase 2
— NVIDIA K40
* Instrumentation
— Coarse grain: PDU (1Hz)

— Fine grain: Yokogawa DL850E ScopeCorder (1KHz) —
from modules at 10Ms/s




‘ Data Staging over (Deep) Memory Hierarchy

Empirical evaluation on CAPER

Execution time, energy
consumption, and average power of
the workflow’s execution using
different configurations and devices
for data staging

Each group of columns represents
one configuration (number of cores
for simulation/analysis)

Goal: finding sweet spots for in-

situ data analysis

In this example 12 core for simulation and 4 for
analysis

Using very few cores for analysis delays
simulation tasks

Higher power with power demanding devices
(e.g., DRAM)
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Tradeoffs with the Quality of Solution (Freq. of analysis)

« Execution time, energy consumption, gl [ 11
and average power of the workflow’s I E
execution for different frequency of T
analysis (“foa”) and different devices -
for data staging
* Frequency of analysis foa = k means 100

800

that the data analysis is performed
every K simulation steps
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Speculative Data Movement

- Data speculation incurs little T ool
overhead when it is 0% accurate vs. ol
no speculation both in terms of time o
and energy consumption " i, i, i A &% %
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Speculative Data Movement (cont.)

Results present tradeoffs
that can be exploited at
runtime

— E.g., Execution behavior
with NVRAM is similar with
HDD when data
speculation is accurate

— However, overall energy
consumption is a bit higher
with NVRAM (device

power requirements)

DRAM
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HDD

HDD spec
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HDD spec
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HDD spec
acc=0%
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Conclusions

« Costs (energy, latency) related to transporting, processing and
analyzing increasing data volumes and rates are limiting the
insights from extreme scale applications

« Energy/power-efficiency in combination with other objectives —

understanding tradeoffs are important
— Quality of solution, Performance, Resiliency, etc.

« Using data speculation in data-intensive workflows can
positively impact energy consumption without much negative
impact on performance or the quality of the solution

« Co-design is essential along multiple dimensions

— E.g., runtime system to balance these tradeoffs
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