

Exploring energy-performance-quality tradeoffs for scientific workflows with in-situ data analyses

Georgiana Haldeman, **Ivan Rodero***, Manish Parashar, Sabela Ramos, Eddy Z. Zhang, Ulrich Kremer

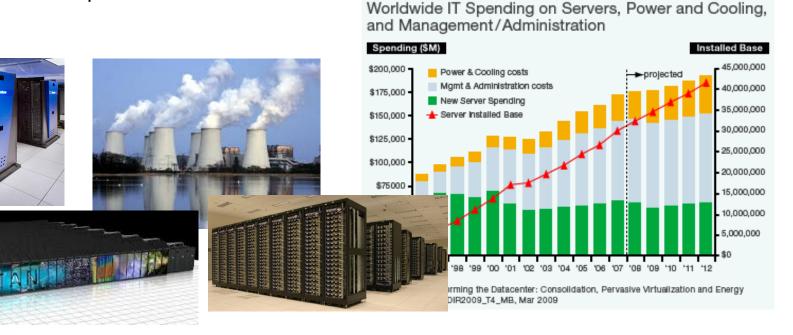
> *Rutgers Discovery Informatics Institute (RDI²) NSF Cloud and Autonomic Computing Center (CAC) Rutgers, The State University of New Jersey email: irodero@rutgers.edu

Enery-Aware High Performance Computing (EnA-HPC) – Dresden, Germany

Power/Energy Challenge – Green HPC

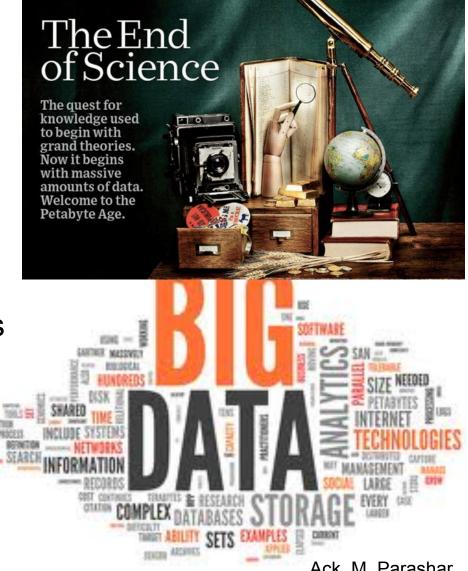
- Power has become a critical concern for HPC/supercomputing
 - Impacts operational costs, reliability, correctness
 - End-to-end integrated power/energy management essential
- Increasing scale towards exascale
 - Using existing technology would require gigawatt??
 - Nuclear reactor scale??
 - > \$2.5B annual power cost

Target < 20MW !!



Modern Science & Society Transformed by **Compute & Data**

- New Paradigms & Practices
 - End-to-end: Seamless access, aggregation, interactions
 - Data-driven, Data/Computeintensive; Age of Digital Observation
 - Integrative, multi-scale, online
- Multi-disciplinary collaborations •
 - Individuals, groups, teams, communities, networks
 - New global science culture
- Unprecedented opportunities, challenges



Ack, M. Parashar

Clearly, modern instruments/experiments/... are producing <u>Big Data</u>!!

Large Hadron Collider

Image credit: Valerio Mezzanotti for The New York Times

Blanco 4m on Cerro Tololo

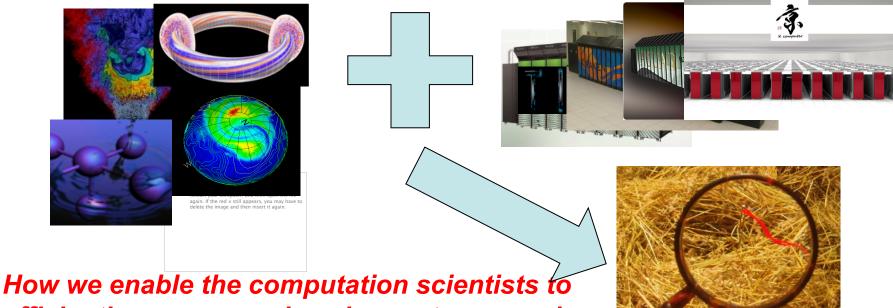
Image credit: Roger Smith/NOAO/AURA/NSF

SKA project

Above is proposed image

Scientific Discovery through Simulations

- Scientific simulations running on high-end computing systems generate huge amounts of data!
 - If a single core produces 2MB/minute on average, one of these machines could generate simulation data between ~170TB per hour -> ~700PB per day -> ~1.4EB per year
- Successful scientific discovery depends on a comprehensive understanding of this enormous simulation data



efficiently manage and explore extreme scale data: "find the needles in haystack" ??

Data analysis challenge

• Can current data mining, manipulation and visualization algorithms still work effectively on extreme scale machine?

I/O challenge

 Increasing performance gap: disks are outpaced by computing speed

Data movement challenge

- Lots of data movement between simulation and analysis machines, between coupled mutli-physics simulation components -> longer latencies
- Improving data locality is critical: do work where the data resides!

Energy challenge

• Future extreme systems are designed to have low-power chips – however, much greater power consumption will be due to memory and data movement!

The **costs of data movement** are increasing and dominating!

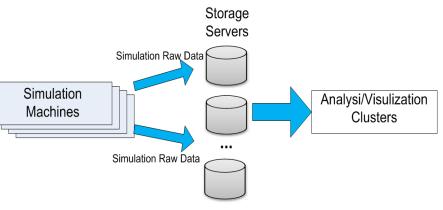
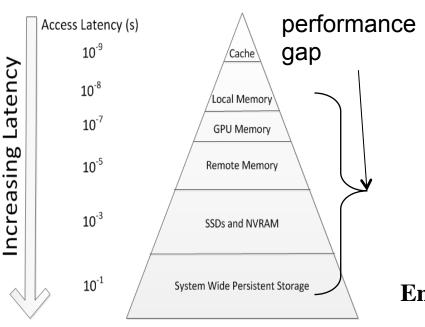


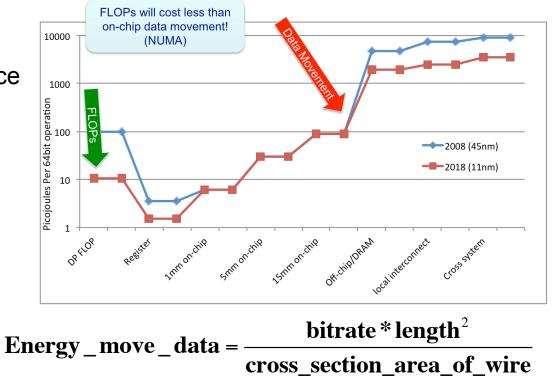
Figure. Traditional data analysis pipeline

The Cost of Data Movement

- 40-50% energy spent in off-chip memory hierarchy!!
 [Lefurgy, IEEE Computer'03]
- Moving data between node memory and persistent storage is slow!



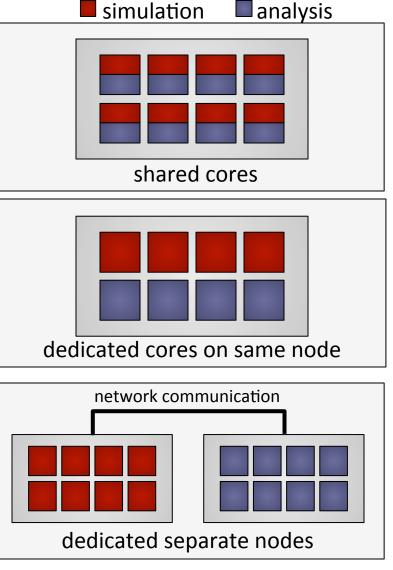
 The energy cost of moving data is a significant concern

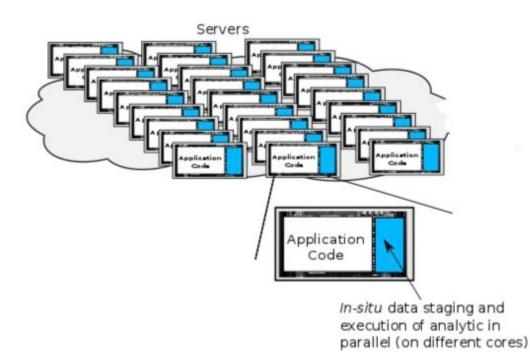


From K. Yelick, "Software and Algorithms for Exascale: Ten Ways to Waste an Exascale Computer"

Rethinking the Data Management Pipeline – In-Situ Data Analytics

- Location of analysis compute resources
 - Same cores as the simulation
 - Dedicated cores on the same node

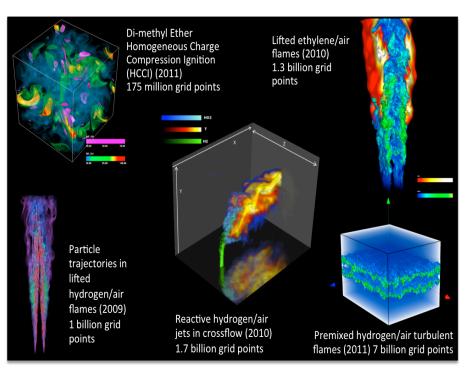




Power Behavior of In-situ Analytics Pipeline

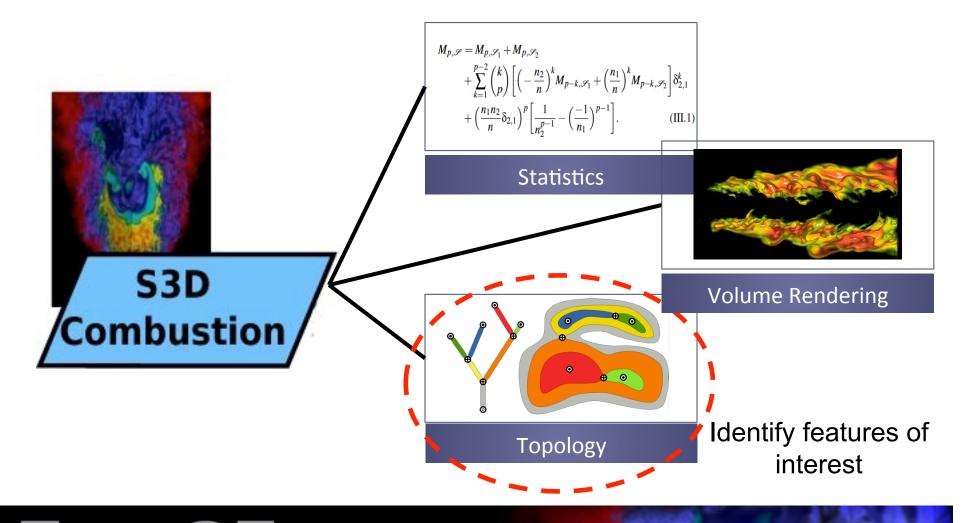
- Combustion simulation workflow with an in-situ data analytics pipeline
- With research groups from

Lawrence Livermore
 National Laboratory



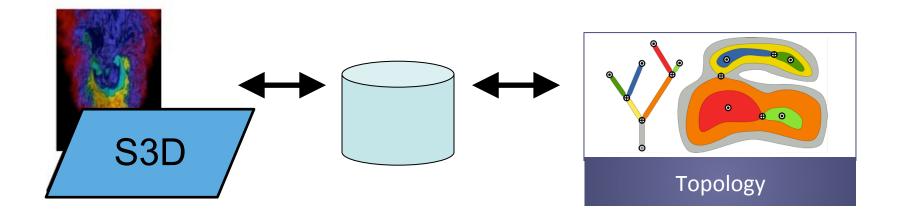
Recent data sets generated by S3D, developed at the Combustion Research Facility, Sandia National Laboratories

In-situ DataAnalysis as Part of S3D



CENTER FOR EXASCALE SIMULATION OF COMBUSTION IN TURBULENCE

Example: Simulation + Data Analysis Workflow



1

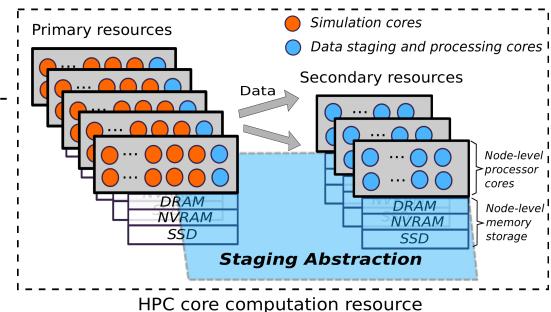
- Modeling data placement and data paths
 - Deep memory hierarchy
- Modeling in-situ analysis choices (cores sharing)
- Opportunities for speculation

Data Staging over Deep Memory Hierarchy

 Small DRAM capacity per core – even aggregated memory on dedicated nodes can hardly keep all coupled data (given the ratio of resource allocations for compute nodes and dedicated nodes)

Hybrid Staging

- Spans horizontally across compute nodes
- Spans vertically across the multilevel memory hierarchy, e.g.
 DRAM/NVRAM/SSD, to extend the capacity of in-memory data staging

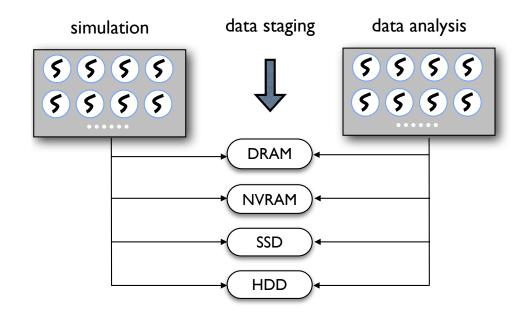


Data Staging over Deep Memory Hierarchy

 Small DRAM capacity per core – even aggregated memory on dedicated nodes can hardly keep all coupled data (given the ratio of resource allocations for compute nodes and dedicated nodes)

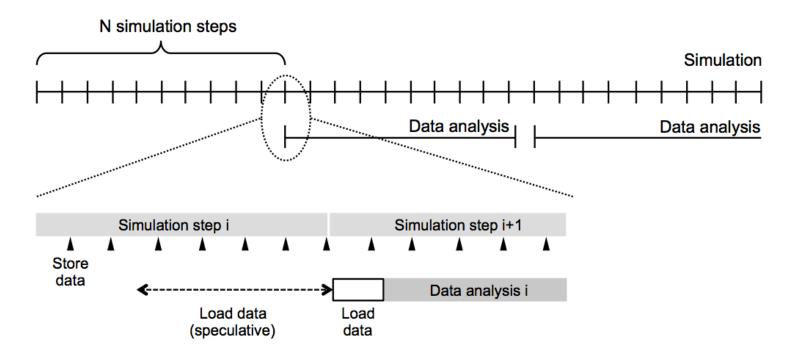
Hybrid Staging

- Spans horizontally across compute nodes
- Spans vertically across the multilevel memory hierarchy, e.g.
 DRAM/NVRAM/SSD, to extend the capacity of in-memory data staging



2

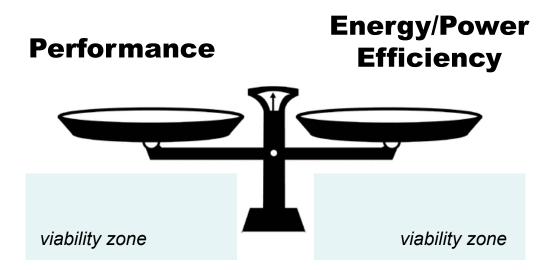
Synthetic Workflow for Understand Relative Behaviors



- Data analysis pipeline (e.g., S3D+Topology analysis)
- Synthetic kernels to evaluation relative behaviors
- Potential use of **speculative** data movement
 - Out-of-the-core data movement vs. traditional speculation at CPU level

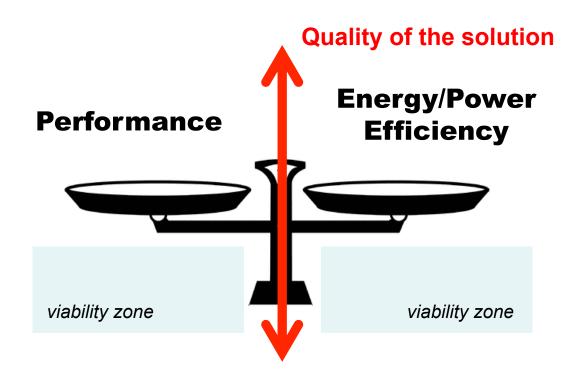
Understanding Behaviors and Tradeoffs

- Performance and Energy/Power
- Limitations when "viability zones" are exclusive



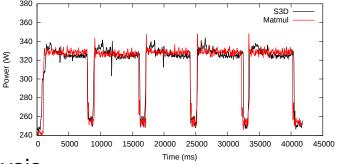
Understanding Behaviors and Tradeoffs

- Quality/accuracy of the solution
 - E.g., single/double precision, convergence values, AMR codes, etc.
- Frequency of analysis to represent quality of the solution



Evaluation Methodology

- Evaluation framework (single node)
 - Customizable multi-threaded framework which takes care of the workflow synchronization
 - Can run different kernel/applications as the simulation and analysis are customizable
- Synthetic kernels to evaluation relative behaviors
 - Matrix multiplication in simulation steps
 - Word finding in analysis steps
- Multiple customizable input parameters
 - Number of cores assigned for simulation/analysis
 - Data path (HDD, SSD, etc.)
 - Frequency of analysis, i.e. every x number of steps



<u>Computational And data-enabled Platform for</u> <u>Energy efficiency Research (CAPER)</u>

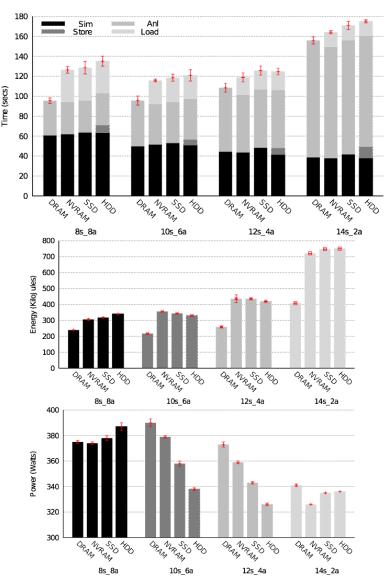
- NSF funded research instrument
 - SyperMicro SYS-4027GR-TRT (support up to 8 GPUs concurrently)
- Phase 1

•

- 8 servers with 2 Intel Xeon Ivybridge E5-2650v2 (16 cores)
- 128GB of DRAM
- 1TB of PCIe Flash-based NVRAM (Fusion-io iodrive2)
- 2TB of SSD (RAID)
- 4TB of hard disk (RAID)
- Intel Xeon Phi 7120P
- Infiniband FDR and 10G Ethernet
- Phase 2
 - NVIDIA K40
- Instrumentation
 - Coarse grain: PDU (1Hz)
 - Fine grain: Yokogawa DL850E ScopeCorder (1KHz) from modules at 10Ms/s

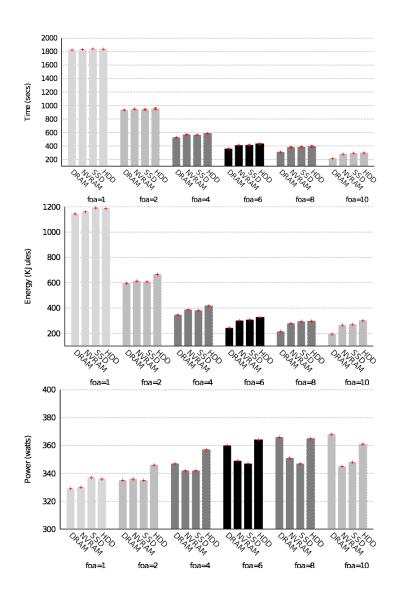
Data Staging over (Deep) Memory Hierarchy

- Empirical evaluation on CAPER
- Execution time, energy consumption, and average power of the workflow's execution using different configurations and devices for data staging
- Each group of columns represents one configuration (number of cores for simulation/analysis)
- Goal: finding sweet spots for insitu data analysis
 - In this example 12 core for simulation and 4 for analysis
 - Using very few cores for analysis delays simulation tasks
 - Higher power with power demanding devices (e.g., DRAM)



Tradeoffs with the Quality of Solution (Freq. of analysis)

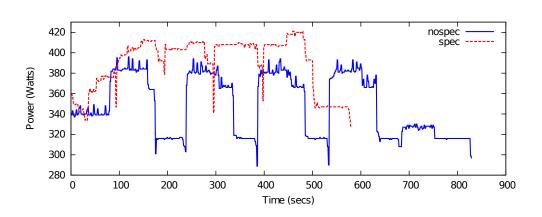
- Execution time, energy consumption, and average power of the workflow's execution for different frequency of analysis ("foa") and different devices for data staging
- Frequency of analysis foa = k means that the data analysis is performed every k simulation steps
- Execution time and energy consumption decreases as the frequency of analysis decreases
- However, average power increases as more computation/data movement is performed in parallel

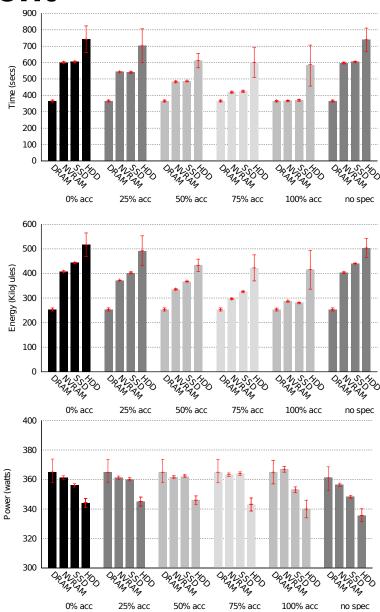


2

Speculative Data Movement

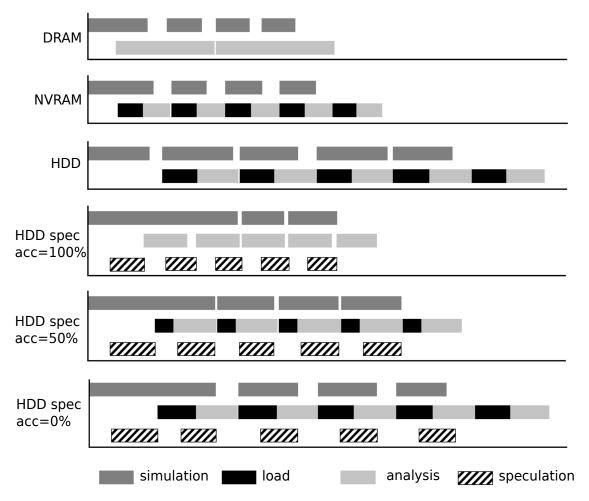
- Data speculation incurs little overhead when it is 0% accurate vs. no speculation both in terms of time and energy consumption
- The average power is higher when performing data speculation because it shares resources with the simulation and the analysis





Speculative Data Movement (cont.)

- Results present tradeoffs that can be exploited at runtime
 - E.g., Execution behavior with NVRAM is similar with HDD when data speculation is accurate
 - However, overall energy consumption is a bit higher with NVRAM (device power requirements)



Conclusions

- Costs (energy, latency) related to transporting, processing and analyzing increasing data volumes and rates are limiting the insights from extreme scale applications
- Energy/power-efficiency in combination with other objectives understanding tradeoffs are important
 - Quality of solution, Performance, Resiliency, etc.
- Using data speculation in data-intensive workflows can positively impact energy consumption without much negative impact on performance or the quality of the solution
- Co-design is essential along multiple dimensions
 - E.g., **runtime system** to balance these tradeoffs

Thank You!

Ivan Rodero, Ph.D.

Rutgers Discovery Informatics Institute NSF Cloud and Autonomic Computing Center Rutgers, The State University of New Jersey

Email: irodero@rutgers.edu WWW: http://nsfcac.rutgers.edu/people/irodero/