
����
��������	
���
������������
�������
����

Exploring energy-performance-quality 
tradeoffs for scientific workflows with 

in-situ data analyses 

Georgiana Haldeman, Ivan Rodero*, Manish Parashar, 
Sabela Ramos, Eddy Z. Zhang, Ulrich Kremer 

 
*Rutgers Discovery Informatics Institute (RDI2) 

NSF Cloud and Autonomic Computing Center (CAC) 
Rutgers, The State University of New Jersey 

email: irodero@rutgers.edu 

Enery-Aware High Performance Computing (EnA-HPC) – Dresden, Germany   September 1, 2014 
 



����
��������	
���
������������
�������
����

•  Power has become a critical concern for HPC/supercomputing 
–  Impacts operational costs, reliability, correctness 
–  End-to-end integrated power/energy management essential 

•  Increasing scale towards exascale 
–  Using existing technology would require gigawatt?? 

•  Nuclear reactor scale?? 
•  > $2.5B annual power cost 

Target < 20MW !! 

Power/Energy Challenge – Green HPC 
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•  New Paradigms & Practices 
•  End-to-end: Seamless access, 

aggregation, interactions 
•  Data-driven, Data/Compute-

intensive; Age of Digital 
Observation  

•  Integrative, multi-scale, online 

•  Multi-disciplinary collaborations 
•  Individuals, groups, teams, 

communities, networks  
•  New global science culture 

•  Unprecedented opportunities, 
challenges 

Modern Science & Society Transformed by 
Compute & Data 

Ack. M. Parashar 
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Clearly, modern instruments/experiments/… 
are producing Big Data!! 

Large Hadron Collider 

Image credit: Roger Smith/NOAO/AURA/NSF 

Blanco 4m on Cerro Tololo 

Image credit: Valerio Mezzanotti for The 
New York Times 

SKA project 

Above is proposed image 
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Scientific Discovery through Simulations 
•  Scientific simulations running on high-end computing systems generate 

huge amounts of data!   
–  If a single core produces 2MB/minute on average, one of these machines could 

generate simulation data between ~170TB per hour -> ~700PB per day -> 
~1.4EB per year 

•  Successful scientific discovery depends on a comprehensive understanding 
of this enormous simulation data 

How we enable the computation scientists to 
efficiently manage and explore extreme scale 
data: “find the needles in haystack” ??  

The image cannot be displayed. Your computer 
may not have enough memory to open the 
image, or the image may have been corrupted. 
Restart your computer, and then open the file 
again. If the red x still appears, you may have to 
delete the image and then insert it again.
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Challenges Faced by Traditional HPC Data Pipelines 

The costs of data movement are increasing and dominating! 

Figure. Traditional data analysis pipeline 

•  Data analysis challenge 
•  Can current data mining, manipulation 

and visualization algorithms still work 
effectively on extreme scale machine? 

•  I/O challenge 
•  Increasing performance gap: disks are 

outpaced by computing speed 

•  Data movement challenge 
•  Lots of data movement between simulation and analysis machines, between 

coupled mutli-physics simulation components -> longer latencies  
•  Improving data locality is critical: do work where the data resides! 

 
•  Energy challenge 

•  Future extreme systems are designed to have low-power chips – however, 
much greater power consumption will be due to memory and data movement!  
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•  The energy cost of moving data is 
a significant concern 

From K. Yelick, “Software and Algorithms for Exascale: Ten Ways to Waste an Exascale Computer”"

The Cost of Data Movement 

Energy_move_data = bitrate* length2

cross_section_area_of_wire

performance 
gap 

•  Moving data between 
node memory and 
persistent storage is slow! 

•  40-50% energy spent in off-chip memory hierarchy!!  
    [Lefurgy, IEEE Computer’03] 



����
��������	
���
������������
�������
����

Rethinking the Data Management Pipeline –  
In-Situ Data Analytics 

shared	
  cores	
  

dedicated	
  cores	
  on	
  same	
  node	
  

dedicated	
  separate	
  nodes	
  

network	
  communica2on	
  

simula2on	
   analysis	
  

•  Location of analysis compute 
resources 
–  Same cores as the simulation 
–  Dedicated cores on the same node 
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•  Combustion simulation workflow with an in-situ 
data analytics pipeline 

Power Behavior of In-situ Analytics Pipeline 

•  With research groups from 

Recent	
   data	
   sets	
   generated	
   by	
   S3D,	
  
developed	
   at	
   the	
   Combus2on	
   Research	
  
Facility,	
  Sandia	
  Na2onal	
  Laboratories	
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In-situ DataAnalysis as Part of S3D 

Topology	
  

Sta2s2cs	
  

Identify features of 
interest 

Volume	
  Rendering	
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Example: Simulation + Data Analysis Workflow 

•  Modeling data placement and data paths 
–  Deep memory hierarchy 

•  Modeling in-situ analysis choices (cores sharing) 
•  Opportunities for speculation 

S3D 
Topology	
  

1 

2 
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Data Staging over Deep Memory Hierarchy 

•  Small DRAM capacity per core – even aggregated memory on dedicated 
nodes can hardly keep all coupled data (given the ratio of resource 
allocations for compute nodes and dedicated nodes) 
     Hybrid Staging 

•  Spans horizontally across 
compute nodes  

•  Spans vertically across the multi-
level memory hierarchy, e.g. 
DRAM/NVRAM/SSD, to extend 
the capacity of in-memory data 
staging 

 

...

...

...
...... Data

Primary resources

Secondary resources

1 
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Data Staging over Deep Memory Hierarchy 

•  Small DRAM capacity per core – even aggregated memory on dedicated 
nodes can hardly keep all coupled data (given the ratio of resource 
allocations for compute nodes and dedicated nodes) 
     Hybrid Staging 

•  Spans horizontally across 
compute nodes  

•  Spans vertically across the multi-
level memory hierarchy, e.g. 
DRAM/NVRAM/SSD, to extend 
the capacity of in-memory data 
staging 

 

1 

......

simulation

DRAM

NVRAM

SSD

HDD

data staging

......

data analysis
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Synthetic Workflow for Understand Relative Behaviors 

•  Data analysis pipeline (e.g., S3D+Topology analysis) 
•  Synthetic kernels to evaluation relative behaviors 
•  Potential use of speculative data movement 

–  Out-of-the-core data movement vs. traditional speculation at CPU level 

2 
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Understanding Behaviors and Tradeoffs 

•  Performance and Energy/Power 
•  Limitations when “viability zones” are exclusive 

Performance 
Energy/Power 

Efficiency 

viability zone viability zone 
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Understanding Behaviors and Tradeoffs 

•  Quality/accuracy of the solution 
–  E.g., single/double precision, convergence values, AMR codes, etc. 

•  Frequency of analysis to represent quality of the solution 

Performance 
Energy/Power 

Efficiency 

viability zone viability zone 

Quality of the solution 
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Evaluation Methodology 
•  Evaluation framework (single node) 

–  Customizable multi-threaded framework which takes care of the 
workflow synchronization 

–  Can run different kernel/applications as the simulation and 
analysis are customizable 

•  Synthetic kernels to evaluation relative behaviors 
–  Matrix multiplication in simulation steps 
–  Word finding in analysis steps 

•  Multiple customizable input parameters 
–  Number of cores assigned for simulation/analysis 
–  Data path (HDD, SSD, etc.) 
–  Frequency of analysis, i.e. every x number of steps 
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Computational And data-enabled Platform for 
Energy efficiency Research (CAPER) 

•  NSF funded research instrument 
•  SyperMicro SYS-4027GR-TRT (support up to 8 GPUs 

concurrently) 
•  Phase 1 

–  8 servers with 2 Intel Xeon Ivybridge E5-2650v2 (16 
cores) 

–  128GB of DRAM 
–  1TB of PCIe Flash-based NVRAM (Fusion-io iodrive2) 
–  2TB of SSD (RAID) 
–  4TB of hard disk (RAID) 
–  Intel Xeon Phi 7120P 
–  Infiniband FDR and 10G Ethernet 

•  Phase 2 
–  NVIDIA K40 

•  Instrumentation 
–  Coarse grain: PDU (1Hz) 
–  Fine grain: Yokogawa DL850E ScopeCorder (1KHz) – 

from modules at 10Ms/s 
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Data Staging over (Deep) Memory Hierarchy 
•  Empirical evaluation on CAPER 
•  Execution time, energy 

consumption, and average power of 
the workflow’s execution using 
different configurations and devices 
for data staging 

•  Each group of columns represents 
one configuration (number of cores 
for simulation/analysis)  

•  Goal: finding sweet spots for in-
situ data analysis 

–  In this example 12 core for simulation and 4 for 
analysis 

–  Using very few cores for analysis delays 
simulation tasks 

–  Higher power with power demanding devices 
(e.g., DRAM) 

1 
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Tradeoffs with the Quality of Solution (Freq. of analysis) 

•  Execution time, energy consumption, 
and average power of the workflow’s 
execution for different frequency of 
analysis (“foa”) and different devices 
for data staging 

•  Frequency of analysis foa = k means 
that the data analysis is performed 
every k simulation steps 

•  Execution time and energy 
consumption decreases as the 
frequency of analysis decreases 

•  However, average power increases 
as more computation/data 
movement is performed in parallel 
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Speculative Data Movement 

•  Data speculation incurs little 
overhead when it is 0% accurate vs. 
no speculation both in terms of time 
and energy consumption 

•  The average power is higher when 
performing data speculation 
because it shares resources with the 
simulation and the analysis 

2 
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•  Results present tradeoffs 
that can be exploited at 
runtime 

–  E.g., Execution behavior 
with NVRAM is similar with 
HDD when data 
speculation is accurate 

–  However, overall energy 
consumption is a bit higher 
with NVRAM (device 
power requirements) 
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Speculative Data Movement (cont.) 
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Conclusions  

•  Costs (energy, latency) related to transporting, processing and 
analyzing increasing data volumes and rates are limiting the 
insights from extreme scale applications  

•  Energy/power-efficiency in combination with other objectives – 
understanding tradeoffs are important 
–  Quality of solution, Performance, Resiliency, etc. 

•  Using data speculation in data-intensive workflows can 
positively impact energy consumption without much negative 
impact on performance or the quality of the solution 

•  Co-design is essential along multiple dimensions 
–  E.g., runtime system to balance these tradeoffs 
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Thank You! 

Ivan Rodero, Ph.D. 
 
Rutgers Discovery Informatics Institute 
NSF Cloud and Autonomic Computing Center 
Rutgers, The State University of New Jersey 
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