INTERNATIONAL CONFERENCE ON ENERGY-AWARE HIGH PERFORMANCE COMPUTING

Are our Dense Linear Algebra Libraries Energy-Friendly?

Time-Power-Energy Trade-Offs in BLAS and LAPACK

Jose I. Aliaga¹, Maria Barreda¹, <u>Manuel F. Dolz</u>², Rafael Mayo¹, Enrique S. Quintana-Ortí¹

September 1st - 2nd, 2014, Dresden (Germany)

Motivation

- High performance computing
 - Optimization of algorithms applied to solve scientific complex problems
- Technological advance ⇒ Performance improvement
 - Higher number of cores per socket (multicore processors)
 - Use of accelerators (GPUs) and coprocessors (e.g., Intel Xeon Phi)
- High performance computing data centers ⇒ High energy consumption!
 - Growth of the Total Cost of Ownership (TCO)
 - Power wall towards exascale computing

Performance-Power-Energy in BLAS Impact of DCT-DVFS on Complex Problems Concluding Remarks

Outline

2 Performance-Power-Energy in BLAS

- BLAS routines
- Environment setup
- Experimental evaluation

Impact of DCT-DVFS on Complex Problems

- Performance/power/energy Trade-offs
- 4 Energy Proportionality in DLA
 - Definition
 - Experimental evaluation

5 Concluding Remarks

Introduction

Performance-Power-Energy in BLAS Impact of DCT-DVFS on Complex Problems Energy Proportionality in DLA Concluding Remarks

Introduction

- Why linear algebra?
 - Linear algebra libraries reside at the bottom of the scientific computing "foodchain"
 - Its performance is key to many HPC applications, also its energy efficiency!
 - Insights can be extended to other areas
- Numerical scientific applications can be decomposed in simple kernels "dwarfs"
 - Implementations from MKL, GotoBLAS, OpenBLAS, BLIS, LAPACK, etc.
 - **Problem**: they are not deeply analized from the performance, power and energy perspectives

BLAS routines Environment setup Experimental evaluation

BLAS routines as the base of DLA

- BLAS-2 (matrix-vector operations):
 - $O(n^2)$ operations on $a = O(n^2)$ data
 - FLOPS limited by memory access
 - Presumedly memory bound operations
- BLAS-3 (matrix-matrix operations):
 - $O(n^3)$ operations on a $> O(n^2)$ data
 - FLOPS rate close to processor's peak!
 - CPU-bound operations

BLAS-2 and BLAS-3 have, by definition, different behaviour from time-power-energy balance!

- Study case:
 - dsymv: BLAS-2 symmetric matrix-vector product
 - dsyr2k: BLAS-3 symmetric rank-2k update

BLAS routines

BLAS routines Environment setup Experimental evaluation

dsyr2k: BLAS-3 symmetric rank-2k update

$$\boldsymbol{C} := \boldsymbol{\beta}\boldsymbol{C} + \boldsymbol{\alpha}\boldsymbol{A}\boldsymbol{B}^{\mathsf{T}} + \boldsymbol{\alpha}\boldsymbol{B}\boldsymbol{A}^{\mathsf{T}}$$

- C: symmetric matrix of size $n \times n$
- A, B: factor matrices of size $n \times k$
- α, β : scalars
- Updates only the lower (or upper) triangular part of C

Costs:

- $2n^2k$ operations on $n^2/2 + 2nk$ DP elements
- CPU-bound with (n pprox k) but memory-bound as k
 ightarrow 1

BLAS routines

BLAS routines Environment setup

dsymv: BLAS-2 symmetric matrix-vector product

 $y := \beta y + \alpha A x$

- A: symmetric matrixs of size $n \times n$
- x, y: vectors of size n
- α, β : scalars

Costs:

- $2n^2$ operations on $n^2/2$ DP elements
- Ratio of 4 flops per matrix element read, thus is a memory-bound operation

BLAS routines Environment setup Experimental evaluation

Environment setup

- Intel Xeon E5-2620 Sandy Bridge (6 cores) at 2.0 GHz with 32 Gbytes of DDR3 RAM (1.3 GHz)
 - Runs using 1, 2, 4 and 6 cores
 - {1.2,1.4,1.6,1.8,2.0} GHz (userspace governor)
 - 2.3 GHz turbo frequency (ondemand governor)
- Power measures obtained via the RAPL interface (MSR):
 - Core, Uncore, DRAM components
- Use of the reference LAPACK:
 - Double-precision (DP) kernels from OpenBLAS 0.2.92
 - n = 4,096 to prevent the problem fitting into L3 cache (15 MB)

BLAS routines Environment setup Experimental evaluation

Performance-Power-Energy in BLAS-3

• Execution time

- Decreases when the number of cores and CPU frequency increases
- Best option: OD/6 cores!

Average power

- Increases with the number of cores and CPU frequency
- Almost only Core power changes!

• Energy consumption

- The greenest is 1.6 GHz/6 cores
- The fastest is OD/6 cores
- Performance: 1.43×; Energy efficiency: 0.93×

BLAS routines Environment setup Experimental evaluation

Performance-Power-Energy in BLAS-3

• Execution time

- Decreases when the number of cores and CPU frequency increases
- Best option: OD/6 cores!

Average power

- Increases with the number of cores and CPU frequency
- Core and DRAM power changes!

• Energy consumption

- The greenest is 1.4 GHz/6 cores
- The fastest is OD/6 cores
- Performance: 1.52×; Energy efficiency: 0.92×

10/19

BLAS routines Environment setup Experimental evaluation

Performance-Power-Energy in BLAS-2

• Execution time

- Decreases when the number of cores grows up to 4
- Memory-bottleneck or unbalanced OpenBLAS for 6 cores
- Memory bandwith is proportional to the CPU frequency

Average power

- Increases with the number of cores and CPU frequency
- Core and small DRAM power changes

• Energy consumption

- The greenest is 1.8 GHz/4 cores
- The fastest is OD/6 cores
- Performance: 1.16×; Energy efficiency: 0.81×

Performance/power/energy trade-offs

When is it crucial to perform a longer execution and decrease the power/energy consumption?

- Look at the arithmetic intensity of operations:
 - Ratio of flops and memory operations
 - dsyr2k: with $k = 48 \ll n$, then $2n^2k/n^2 \approx 2k = 96$
 - dsymv: 4
 - For some problems this depends on input parameters! (e.g., k)
- Studying the memory- vs. CPU-bound in more depth:
 - Peak: theoretical peak of the platform

6 cores at 2.0 GHz: 8 DP flops/cycle \times 2.0 GHz \times 6 cores = 96 DP GFLOPS

- Sustained peak: obtained by executing the kernel on a much larger problem size
- **Peak (memory)**: obtained using the theoretical bandwith of the processor, 42 Gbytes/sec.

Performance/power/energy Trade-offs

Arithmetic intensity of BLAS-3

Experiments with dsyr2k varying the arithmetic intensity $k = \{4, 8, 16 \dots, 128\}$

- Core power grows with the arithmetic intensity and DRAM is reduced (better locality)
- For 1 core, Uncore power is constant (40 %)
- GFLOPS/W grows with the arithmetic intensity and core count (multithread BLAS)

Performance/power/energy Trade-offs

Arithmetic intensity of LAPACK

dsytrd (n=8,192, b=64)

- LAPACK routine for symmetric eigenproblems
 - 50% of flops are BLAS-2 (dsymv)
 - 50% of flops are BLAS-3 (dsyr2k)
 - As the computtion proceeds, the size of the:
 - dsyr2k decreases in k steps
 - dsymv decreases in unit steps

Energy consumption

- The greenest is 1.4 GHz/6 cores
- The fastest is OD/6 cores
- Performance: 1.37×; Energy efficiency: 0.90×

14/19

• Dynamic DCT/DVFS is sometimes a delicate issue and requires further investigation

Definition Experimental evaluation

What is energy proportionality?

• Energy proportionality:

- Power consumption grows linearly with the amount of work being performed
- Null activity \rightarrow zero power
- Maximum throughput \rightarrow maximum power
- For the DLA domain...
 - we consider FPUs and DDR power consumption and,
 - GFLOPS to measure the throughput
- Examples:
 - dgemm: BLAS-3 matrix-matrix product
 - CPU-bound operation: $2n^3$ flops on $3n^2$ DP elements
 - dgemv: BLAS-2 matrix-vector product
 - Memory-bound operation: $2n^2$ flops on n^2 DP elements

Definition Experimental evaluation

Energy proportionality of BLAS-3

- dgemm with m = n = k = 8,192 running at 2.0 GHz
- Runs from 1 to 6 cores
- EP: 1 minus the integral of the curve divided by integral of the diagonal 1 stands for a perfect case, 0 for the opposite

Definition Experimental evaluation

Energy proportionality of BLAS-2

- dgemv with m = n = 8,192 running at 2.0 GHz
- Runs from 1 to 4 cores
- EP: 1 minus the integral of the curve divided by integral of the diagonal 1 stands for a perfect case, 0 for the opposite

Conclusions and future work

- Investigation between performance-power-energy of BLAS/LAPACK operations on a Intel Xeon E5 Sandy Bridge:
 - For performance and:
 - $\bullet~{\rm CPU-/memory\text{-}bound~operations} \to {\rm run}$ at the highest frequency with all cores
 - On this processor memory bandwith varies with the clock frequency!
 - For energy consumption:
 - Best DCT/DVFS combination depends on problem parameters (size, intensity, etc.)!
- Turning DLA routines energy-aware is not straight-forward!
 - Requires specific study on the target platform!
 - Dynamic DCT/DVFS is a solution but is a delicate issue (future work)
- We can have more energy savings if future architectures tend to proportional computing!

Thanks for your attention!

Questions?

Dr. Manuel F. Dolz manuel.dolz@informatik.uni-hamburg.de