How Much Power Does your Server Consume? Estimating Wall Socket Power Using RAPL Measurements

Kashif Nizam Khan

Zhonghong Ou, Mikael Hirki, Jukka K. Nurminen, Tapio Niemi

Motivation

- The Large Hadron Collider produces 30 petabytes of data every year
- CERN uses 1.3 terawatt hours of electricity annually.
- Datacenters in the U.S. used 91 billion kilowatt-hours of electricity in 2013

Motivation

- The Large Hadron Collider produces 30 petabytes of data every year
- Datacenters in the U.S. used 91 billion kilowatt-hours of electricity in 2013
- CERN uses 1.3 terawatt hours of electricity annually.

How much energy is consumed?

Motivation

- The Large Hadron Collider produces 30 petabytes of data every year
- Datacenters in the U.S. used 91 billion kilowatt-hours of electricity in 2013
- CERN uses 1.3 terawatt hours of electricity annually.

How much energy is consumed?

Where is the energy spent?

How to measure the energy consumption?

- External devices/energy meters
- Energy sensors
- Modeling power consumption with performance counters

Problems

- Instrumentation can be expensive
- Hinders normal operation of the system
- Accuracy is relative to performance degradation

Idea

To predict the wall socket power consumption without minimal interruption and high accuracy

Methodology

- Leverage RAPL to predict full system power consumption from the wall socket
- Our method:
 - Carefully designed experiments reveal the correlation between processor package power and wall socket power
 - Propose a model to predict the wall socket power
 - Verify the model using a gamut of diversified benchmarks and applications

We propose a predictive model to estimate wall socket power from processor package power, with high accuracy.

Our prediction model achieves 5.6% error rate

Advantages:

- Minimal interruption
- Easily executable
- Allocate proper energy budget
- Power limit to best utilize electricity pricing variations

Intel RAPL

- pp1/graphics power plane (client only)
- DRAM power plane (server only)

Processor (Intel)	Sockets	Cores	Hyperthreads	Frequency Range	L3 Cache	Memory	Tag
Core i7-4770	1	4	4	$0.8-3.4~\mathrm{GHz}$	8 MB	16 GB	Machine 1
Xeon E3-1230	1	4	4	$0.8-3.3 \mathrm{~GHz}$	8 MB	$16 \mathrm{GB}$	Machine 2
Xeon $E5-2650$	2	16	16	$1.2–2.6~\mathrm{GHz}$	40 MB	$64~\mathrm{GB}$	Machine 3

Benchmarks

- Stress-ng
- Stream
- ✤ ParFullCMS
- ✤ Parsec

Stress-ng: Stress the CPU cores with 100% work- load

10 Web site. http://kernel.ubuntu.com/~cking/stress-ng/.

Stream: Understand the characteristics of different systems in terms of power consumption when running a memory intensive task.

ParFullCMS: A Geant4 benchmark, multi-threaded high energy physics workload. Employs complex geometry for simulation and essentially exhibits similar properties like Compact Muon Solenoid (CMS) experiments in CERN.

Parsec: A non-synthetic benchmark. Diverse instruction mix, memory access and network operations. Application domains: Financial, computer vision, deduplication etc.

14 Experimental results of Machine 1 - Stress-ng

Experimental results of Machine 3 - Stress-ng

16 Wall and package power consumption with time - ParFullCMS

Model Formulation

Prediction Errors of the Model

k	E_T	E_V	E_{Test}
1	4.87	6.42	5.59
2	4.38	7.89	7.08
3	4.37	8.34	7.13
4	4.37	8.17	7.18

Prediction Errors of the Model

k	E_T	E_V	E_{Test}
1	4.87	6.42	(5.59)
2	4.38	7.89	7.08
3	4.37	8.34	7.13
4	4.37	8.17	7.18

Prediction Errors of the Model

k	E_T	E_V	E_{Test}
1	4.87	6.42	5.59
2	4.38	7.89	7.08
3	4.37	8.34	7.13
4	4.37	8.17	7.18

 $P_{wall} = 1.227 * P_{package} + 22.084$

Discussion and Conclusion

- There are cases when RAPL measurements are not enough to measure the wall power consumption,
 - server with multiple disks is performing a disk intensive task,
 - a server where the processing is done by the GPU rather than the CPU.
- For the disk example, the wall power consumption can be estimated using the following equation:

$$P_t = P_i + P_{RAPL} + P_{disk}$$

Discussion and Conclusion

- System that we use are relatively small scale
- Data-sets has to more diverse and rich in numbers
- We are currently enhancing our work with more data-sets and we plan to test the model on bigger scale servers
- Preliminary results show promising low error rates
- We also plan to extend our work for other processor architectures ARM and AMD

Thank you!

Questions?