

Power Measurement Techniques for Energy-Efficient Computing: Reconciling Scalability, Resolution, and Accuracy

<u>Thomas Ilsche</u>, Robert Schöne, Joseph Schuchart, Daniel Hackenberg, Marc Simon, Yiannis Georgiou, Wolfgang E. Nagel: Center for Information Services and High Performance Computing (ZIH), TU Dresden

EnaHPC 2017 – June 22, 2017 – Frankfurt

Why Measure Energy / Power?

- Collaborative Research Center 912: HAEC Highly Adaptive Energy-Efficient Computing
- Energy monitoring, accounting
- Power capping
- Energy efficiency analysis/optimizations
- Imagine performance optimization with a clock that only updates once a second and has a 10% error

Key Criteria for Energy Measurements

- Collaborative Research Center 912: HAEC Highly Adaptive Energy-Efficient Computing
 - 1. Temporal granularity
 - \rightarrow Analyze short program phases
 - 2. Spatial granularity
 → Distinguish individual components
 - 3. Well-defined accuracy
 → Energy savings ≫ uncertainty
 - 4. Scalability
 - \rightarrow Usage in HPC systems
 - 5. Cost

 \rightarrow Applicable to large production system or small experimental system

Related work

4

Collaborative Research Center 912: HAEC – Highly Adaptive Energy-Efficient Computing

- 1. Temporal granularity
 - \rightarrow Common solutions between 1 s and 1 ms
- 2. Spatial granularity
 → DC power meters, e.g. PowerPack, PowerMon2, PowerInsight
- 3. Well-defined accuracy

 \rightarrow Professional AC power meter

4. Scalability

 \rightarrow Vendor power meter, integrated PDU measurement

5. Cost

 \rightarrow Embedded CPU measurements, RAPL

Advancing Energy Measurement

- Custom-built system
- Very high temporal resolution
- Good spatial resolution
- Well understood accuracy

- **HDEEM**Vendor collaboration
- Highly scalable
- Verified accuracy
- Good temporal and spatial resolution
- Deployed in production HPC system with 1456 nodes

Systems Under Test

Collaborative Research Center 912: HAEC - Highly Adaptive Energy-Efficient Computing

- □ Single node workstation
- \square 2 × Intel Xeon E5 2690 v3
- □ 256 GiB memory
- □ 800 GB SSD
- Ubuntu 16.04 Server

- 1456 Bullx DLC nodes
- \square 2 × Intel Xeon E5-2680 v3
- □ 64 256 GiB memory
- □ 128 GB SSD

□ Bull SCS4

Instrumentation points

- \square 2 × sockets (CPU + Memory)
- □ Mainboard 12V, 5V, 3.3V ATX
- □ GPU via PCIe and 8+6 Molex
- □ SSD 12V, 5V
- □ Sum of all fans
- □ All DC power consumers

- I Total DC node power
- \square 2 × CPUs
- \square 4 × DRAM DIMM groups

HAEC Instrumentation Points

8

Collaborative Research Center 912: HAEC - Highly Adaptive Energy-Efficient Computing

Hall Effect Sensors

Shunts Thomas Ilsche Voltage Regulators

HAEC Measurement Chain

Collaborative Research Center 912: HAEC – Highly Adaptive Energy-Efficient Computing

Sensor

- Shunts at all DC consumers
- Also capture all voltages

Analog processing

- Amplification to common voltage range
- Filtering

Data Acquisition

- Two NI DAQ cards
- Up to 500 kSa/s (for four sensors)
- All sensors 7 kSa/s

Digital processing

- Out-of-band measurement
- Analysis & integration

Thomas IIsche

HDEEM Hardware

Collaborative Research Center 912: HAEC - Highly Adaptive Energy-Efficient Computing 10

Thomas IIsche

HDEEM Power Acquisition Scheme

Collaborative Research Center 912: HAEC – Highly Adaptive Energy-Efficient Computing

Thomas Ilsche

Calibration & Verification HAEC

- Measuring shunts in the setup using a variable load resistor
- Calibration factors in amplifiers
- Error < 2% compared to calibrated reference measurement
- Mostly within the uncertainty of the reference

Calibration HDEEM

- Calibration of the deployed HPC system
- Determine calibration factor for each node
- Program correction factors for raw sensor values

Verification HDEEM

- Independent measurement
 with calibrated power meter
- Challenging worst-case aliasing workloads
- \square Maximum error 3 %

Application Energy Measurement

Collaborative Research Center 912: HAEC – Highly Adaptive Energy-Efficient Computing

Plugin metric for Score-P

15

- All measurement is asynchronous
 - No perturbation
- NAS parallel benchmarks
 - OpenMP & MPI
 - BT solver

HDEEM Example (NPB on 1024 nodes)

16 Collaborative Research Center 912: HAEC – Highly Adaptive Energy-Efficient Computing

HDEEM Example (NPB on 1024 nodes)

HDEEM Example (NPB on 1024 nodes)

HAEC Example

Summary

- Application optimization needs good metrics
 - Energy efficiency optimizations brings together hardware and software
- Demonstrate two energy measurement infrastructures
 - Very high resolution at small scale
 - 500 kSa/s observe applications regions of < 100 μs</p>
 - Separate measurements per DC-component
 - High resolution measurement at HPC production scale (1456 nodes)
 - 1 kSa/s per node power
 - 100 Sa/s socket / DRAM measurement
 - **\square** Both measurements verified with high accuracy errors < 2 % / < 3 %

