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Modern systems are built around constraints
• Number of nodes and cores
• Amount of memory per core
• Memory and network bandwidth
• …

Power and Energy add two new constraints for centers
• Hard limits caused by physical and/or budget constraints
• Typically not an optimization target
• Some centers are already starting to hit such limits today

But: power and energy have special properties
• Getting more memory is impossible
• Changing the number of nodes of a job on the fly is hard
• But: Power and energy can easily manipulated

Constraints are a Fact of Life (and also in HPC)



Power Consumption on Vulcan, a BG/Q System

Center-imposed Power Constraint



Power Consumption on Vulcan, a BG/Q System

Center-imposed Power Constraint

Unused Power Potential



Overprovisioned systems
— More hardware that can be powered at once
— Need mechanisms to control and cap power

What if …

Center-imposed Power Constraint



Overprovisioned systems
— More hardware that can be powered at once
— Need mechanisms to control and cap power

Need active control system (in hardware or software)
— Already happens in GPUs, Turbo mode, dark silicon, …

What if …

Center-imposed Power Constraint
Need to Active Control



Vertically integrated software stack
• Part of global system software 
• Integration with node software
• Scalable communication 
• Interaction with applications
• Low overhead

Support for Multiple Constraints
• Initial target: power constraints
• Ultimately any constraint
• Work on energy ongoing as well
• Configurable for each site

Developed as part of the Exscale Computing Project (ECP)
• Multiple projects (ARGO, PowerStack)
• Integration with Caliper to enable application feedback
• Close collaboration with the hardware column

New Software Stack to Manage Power/Energy



Four Questions

Managing the power hierarchy
• How to Manage on Node Power/Energy?
• How to Manage on Job Power/Energy?
• How to Manage on Global Power/Energy?

How to coordinate to schedule resources?
• Interfaces between layers
• Integration into the machine resource manager



Arbiter between system constraints and runtime requests
• Central point for power and energy measurements
• Power limits vs. runtime demands
• Energy limits vs. runtime demands
• Thermal control

(1) How to Manage on Node Power/Energy?

Node
Monitor

Locally supported by libmsr
• https://github.com/LLNL/libmsr
• Access to RAPL on Intel systems

Open challenges
• Enforcement across runtimes
• APIs for runtime
• Coordination backchannel



(2) How to Manage on Job Power/Energy?

Conductor

Node
Monitor

Identify critical path
• Only	the	critical	path	needs	full	power
• The	rest	can	work	with	reduced	power

Measure power headroom
• Execute	application	for	controlled	period	of	
time	and	measure	power

• Can	be	distributed	based	on	process	criticality

Execute repeatedly during 
application execution

• Typically	on	time	step	boundaries
• Intended	for	repetitive	applications

Given a job-level power constraint, 
how do we optimize application performance?



Profile the configuration space on-line 

1) Run each computation operation 
on individual nodes 
at distinct configurations
(e.g., # threads)

2) Record the power/perf.
profile characteristics of each 
computation operation 

3) Construct Pareto frontier

4) Pick best configuration under
a given power bound

Step I: Configuration Selection



How can we allocate power to the critical operations in 
an application and improve performance?

Step II: Power Reallocation
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Conductor Benefits Dynamic Apps.
Example: Crystal code on 512 SandyBridge CPUs

• Up to 13% speedup over Static scheme
• Benefits from process-level 

imbalance of power usage

Before	power	reallocation

After	power	reallocation



ECP PowerStack Project

GEOPM
-

Conductor
Adagio

Node
Monitor

Goal: Creating a production ready job-level power runtime
• Conductor techniques for power-aware computing
• Option to enable energy-aware computing (Adagio)
• Scalable and extensible base infrastructure
• Portable across platforms
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Free open source power management 
framework 

• Job-level power management runtime
• Focus on scalability

Scalable, self-configuring tree-based
communication infrastructure

Plug-in architecture for extensibility 
• Control algorithms
• Platform plug-ins

Alpha version available
• v1.0 product coming soon
• github.com/geopm/geopm

Intial target ANL’s Theta
• Other systems soon



ECP PowerStack Project

GEOPM
-

Conductor
Adagio

Node
Monitor

GEOPM as integration base
• Inclusion	of	Conductor’s	mechanisms
• Platform	extensions
• Deployment	on	ECP	testbeds

Caliper for application annotations
• Low	overhead	annotation	API
• Portable	across	apps	and	tools
• Demarcation	of	phases	and	regions
• Mapping	to	GEOPM	annotations

Goal: Creating a production ready job-level power runtime
• Conductor techniques for power-aware computing
• Option to enable energy-aware computing (Adagio)
• Scalable and extensible base infrastructure
• Portable across platforms



Application Introspection with Caliper
https://github.com/LLNL/Caliper

Shared application/workflow wide context
— Simple annotation API for applications and libraries
— Re-usable annotations across tools, codes, runtimes, …
— Automatic context management across SW components

Upper layers can query context and annotate their own data
— Existing tools can use Caliper as a module
— New tools can be integrated into Caliper as “services”

Timer

PAPI

...

MeasurementsApplication
Component

1

phase,
iteration no.

Component
2

coordinate,
element

Libraries
Solver

solver
iteration

Mesh

refin. level

rank,
function,
wait time

Runtime
MPI OpenMP

thread id,
construct,
wait time

Common context space

app.c1.phase, app.c1.iteration, app.c2.coordinate, app.c2.element, solver.iteration, mesh.refinementlvl, mpi.rank, mpi.function,
mpi.wait, openmp.thread, openmp.construct, openmp.wait, time.duration, time.timestamp, papi.l2miss, papi.fpops, ...

C
a
li
p
e
r



(3) How to Manage on Global Power/Energy?

PowSched

GEOPM
-

Conductor
Adagio

Node
Monitor

Transparent Runtime Adaptation 
— Part of a global operating system
— Reallocation of unused power
— Transparent to application
— Scalable communication scheme

Nodes

Boards

Enclave

System

libmsr



Predetermine per job power budgets

(1) Collect the readings for all components
• Scalable aggregation 

(2) Allocate less power to components that are consuming 
below their budget

• Find appropriate jobs
• Calculate new power per job
• Distribute to jobs

(3) Allocate more power to components that are 
consuming near their current allocation

• Calculate power headroom
• Split headroom among eligible jobs
• Distribute to jobs

PowSched (Part of ECP ARGO Project)



Power-aware Resource Management



Power-aware Resource Management



(4) How to Coordinate to Schedule Resources?

PowSched
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Power-aware Job Scheduling
— Power as a controlled resource 
— RMAP approach

• Power	aware	backfilling

FLUX Resource Manager
— Hierarchical resource control 



Integrating Static & Dynamic Power Management

Prototyping in SLURM
— Using SLURM plugins
— Currently being 

implemented in a large 
scale live testbed

RMAP for static allocation
— Model data based on prior runs
— Creates job power budgets

PowSched for dynamic optimization
— Dynamically adjust budgets
— Maintain global total
— Ensure fairness



Open Challenges
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Interfaces for node management
• Adjust to requests
• Enforce limits
• Global coordination on limits

Application input
• Caliper is the mechanism
• Need proper taxonomy
• Phases as a start, what else?

Coordination between PowSched & GEOPM
• Running at the same time
• Avoid conflicts

Interfaces to FLUX
• Need better prediction mechanisms



Power and energy are critical constraints for HPC
— Gaining in importance for centers
— Need software infrastructure to manage

Need full system software stack approach
— Node local management
— Per job management
— System-wide dynamic management
— Resource management 

Each component shows promising results
— Prototypes in simulation and on real hardware
— Integration currently in progress
— Challenge: Interfaces

Towards a power-aware software stack for ECP

Conclusions
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